数Ⅱ
数Ⅱ
格子点を通るということは?【山口大学】【数学 入試問題】

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
座標平面上で、$x$座標,$y$座標が共に整数である点を格子点という。
原点を通る2直線$l,m$がそれぞれ原点以外にも格子点を通るとき、
$l,m$のなす角は、$60°$にならないことを証明せよ。
ただし、$\sqrt3$が無理数であることを証明なしに用いても良い。
山口大過去問
この動画を見る
座標平面上で、$x$座標,$y$座標が共に整数である点を格子点という。
原点を通る2直線$l,m$がそれぞれ原点以外にも格子点を通るとき、
$l,m$のなす角は、$60°$にならないことを証明せよ。
ただし、$\sqrt3$が無理数であることを証明なしに用いても良い。
山口大過去問
中国Jr 数学Olympic あっと驚く解法も

単元:
#数学検定・数学甲子園・数学オリンピック等#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^5=1,x \neq 1$とするとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x^6}+\dfrac{x^4}{1+x^8}$の値を求めよ.
中国jr数学オリンピック過去問
この動画を見る
$ x^5=1,x \neq 1$とするとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x^6}+\dfrac{x^4}{1+x^8}$の値を求めよ.
中国jr数学オリンピック過去問
福田の数学〜大阪大学2022年理系第3問〜線分の通過範囲

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正の実数tに対し、座標平面上の2点$P(0,t)$と$Q(\frac{1}{t},0)$を考える。
tが$1 \leqq t \leqq 2$の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。
2022大阪大学理系過去問
この動画を見る
正の実数tに対し、座標平面上の2点$P(0,t)$と$Q(\frac{1}{t},0)$を考える。
tが$1 \leqq t \leqq 2$の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。
2022大阪大学理系過去問
簡単な問題

単元:
#数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \omega=1(\omega \neq 1)$であり,
$x=a+b $
$y=a\omega+b\omega^2 $
$z=a\omega^2+b\omega $である.
$ x^3+y^3+z^3$の値をa,bで表せ.
この動画を見る
$ \omega=1(\omega \neq 1)$であり,
$x=a+b $
$y=a\omega+b\omega^2 $
$z=a\omega^2+b\omega $である.
$ x^3+y^3+z^3$の値をa,bで表せ.
【数学Ⅱ/高2の予習】二項定理の基本

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式の展開式を求めよ
$(x+3)^4$
この動画を見る
次の式の展開式を求めよ
$(x+3)^4$
円周率の証明問題【2010年大分大学】

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
円周率$\pi$に関して次の不等式が成立することを証明せよ。
ただし、数値$\pi=3.141592・・・$を使用して直接比較する解答は0点とする。
$3\sqrt6-3\sqrt2<\pi<24-12\sqrt3$
2010大分大過去問
この動画を見る
円周率$\pi$に関して次の不等式が成立することを証明せよ。
ただし、数値$\pi=3.141592・・・$を使用して直接比較する解答は0点とする。
$3\sqrt6-3\sqrt2<\pi<24-12\sqrt3$
2010大分大過去問
福田の数学〜一橋大学2022年文系第4問〜立方体の内部の点と結んだ線分の通過範囲

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
tを実数とし、座標空間に点$A(t-1,t,t+1)$をとる。また、(0,0,0),(1,0,0),
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を
Wとし、Wの体積をf(t)とする。
(1)f(-1)を求めよ。
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。
2022一橋大学文系過去問
この動画を見る
tを実数とし、座標空間に点$A(t-1,t,t+1)$をとる。また、(0,0,0),(1,0,0),
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を
Wとし、Wの体積をf(t)とする。
(1)f(-1)を求めよ。
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。
2022一橋大学文系過去問
2分で解ける問題

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^2+\dfrac{1}{x^2}=\sqrt2 $のとき,$ x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
この動画を見る
$ x^2+\dfrac{1}{x^2}=\sqrt2 $のとき,$ x^{2022}+\dfrac{1}{x^{2022}}$の値を求めよ.
二項定理を使ってあることに気付ける?【2017年一橋大学】

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ P(0)=1,P(x+1)-P(x)=2x$を満たす整式$P(x)$を求めよ。
2017一橋大過去問
この動画を見る
$ P(0)=1,P(x+1)-P(x)=2x$を満たす整式$P(x)$を求めよ。
2017一橋大過去問
中山廉人の数学力を鈴木貫太郎がチェック

単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
Morite2 English Channel
問題文全文(内容文):
鈴木貫太郎先生が、「指数対数」と「対数関数」の基本を解説します。
公式や定義を確認しましょう。
この動画を見る
鈴木貫太郎先生が、「指数対数」と「対数関数」の基本を解説します。
公式や定義を確認しましょう。
福田の数学〜大阪大学2022年理系第2問〜三角関数と論証

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\alpha=\frac{2\pi}{7}$とする。以下の問いに答えよ。
(1)$\cos4\alpha=\cos3\alpha$であることを示せ。
(2)$f(x)=8x^3+4x^2-4x-1$とするとき、$f(\cos\alpha)=0$が成り立つことを示せ。
(3)$\cos\alpha$は無理数であることを示せ。
2022大阪大学理系過去問
この動画を見る
$\alpha=\frac{2\pi}{7}$とする。以下の問いに答えよ。
(1)$\cos4\alpha=\cos3\alpha$であることを示せ。
(2)$f(x)=8x^3+4x^2-4x-1$とするとき、$f(\cos\alpha)=0$が成り立つことを示せ。
(3)$\cos\alpha$は無理数であることを示せ。
2022大阪大学理系過去問
【わかりやすく解説】相加相乗平均の関係を使う不等式の証明②(高校数学Ⅱ)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a \gt 0,b \gt 0$のとき、不等式$(1+\displaystyle \frac{a}{b})(1+\displaystyle \frac{b}{a}) \geqq 4$が成り立つことを証明せよ
この動画を見る
$a \gt 0,b \gt 0$のとき、不等式$(1+\displaystyle \frac{a}{b})(1+\displaystyle \frac{b}{a}) \geqq 4$が成り立つことを証明せよ
指数不等式

単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{9^x+4^x}{6^x-9^x} \geqq 5 $
これを解け.
この動画を見る
$ \dfrac{9^x+4^x}{6^x-9^x} \geqq 5 $
これを解け.
福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)実数x,yについて、$「|x-y| \leqq x+y」$であることの必要十分条件は
「$x \geqq 0$かつ$y \geqq 0$ 」であることを示せ。
(2)次の不等式で定まるxy平面上の領域を図示せよ。
$|1+y-2x^2-y^2| \leqq 1-y-y^2$
2022一橋大学文系過去問
この動画を見る
次の問いに答えよ。
(1)実数x,yについて、$「|x-y| \leqq x+y」$であることの必要十分条件は
「$x \geqq 0$かつ$y \geqq 0$ 」であることを示せ。
(2)次の不等式で定まるxy平面上の領域を図示せよ。
$|1+y-2x^2-y^2| \leqq 1-y-y^2$
2022一橋大学文系過去問
【わかりやすく解説】相加相乗平均の関係を使う不等式の証明①(高校数学Ⅱ)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a \gt 0,b \gt 0$のとき、不等式$ab+\displaystyle \frac{4}{ab} \geqq 4$が成り立つことを証明せよ
この動画を見る
$a \gt 0,b \gt 0$のとき、不等式$ab+\displaystyle \frac{4}{ab} \geqq 4$が成り立つことを証明せよ
方程式を解く。

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(123.4-12.34) \div x =1.234$
この動画を見る
$(123.4-12.34) \div x =1.234$
福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
$Z+w=Zw$
を満たす点wが描く図形を求めよ。
2022大阪大学理系過去問
この動画を見る
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
$Z+w=Zw$
を満たす点wが描く図形を求めよ。
2022大阪大学理系過去問
どっちがでかい?

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 3^{\sqrt5}$ VS $ 5^{\sqrt3}$ どちらが大きいか?
この動画を見る
$ 3^{\sqrt5}$ VS $ 5^{\sqrt3}$ どちらが大きいか?
【次数が高くても焦るな】対称式 入試問題【2017年昭和大学】

単元:
#数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a+b=1,a^2+b^2=3$のとき、$a^7+b^7$の値を求めよ。
2017昭和大過去問
この動画を見る
$a+b=1,a^2+b^2=3$のとき、$a^7+b^7$の値を求めよ。
2017昭和大過去問
福田の数学〜一橋大学2022年文系第2問〜平面上の三角形の面積の最大値

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}\ 0 \leqq \theta \lt 2\pi$とする。
座標平面上の3点O(0,0), $P(\cos\theta,\sin\theta)$, $Q(1,3\sin2\theta)$
が三角形をなすとき、$\triangle OPQ$の面積の最大値を求めよ。
2022一橋大学文系過去問
この動画を見る
${\Large\boxed{2}}\ 0 \leqq \theta \lt 2\pi$とする。
座標平面上の3点O(0,0), $P(\cos\theta,\sin\theta)$, $Q(1,3\sin2\theta)$
が三角形をなすとき、$\triangle OPQ$の面積の最大値を求めよ。
2022一橋大学文系過去問
【数Ⅱ】領域内の点の最大値・最小値【具体例を作って方針を立てよう】

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
不等式$x^2+y^2 \leqq 9$,$y \geqq \dfrac{1}{3}x-1$で表される領域をDとする.
領域D内の点$(x,y)$について,-$x+y$の最大値・最小値を求めよ.
この動画を見る
不等式$x^2+y^2 \leqq 9$,$y \geqq \dfrac{1}{3}x-1$で表される領域をDとする.
領域D内の点$(x,y)$について,-$x+y$の最大値・最小値を求めよ.
中学生向け「どっちがでかい?」

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\dfrac{10^{2021}+1}{10^{2022}+1}$ VS $\dfrac{10^{2022}+1}{10^{2023}+1}$
この動画を見る
どちらが大きいか?
$\dfrac{10^{2021}+1}{10^{2022}+1}$ VS $\dfrac{10^{2022}+1}{10^{2023}+1}$
指数方程式の基本問題

単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{8^x+27^x}{12^x+18^x}=\dfrac{7}{6}$
これを解け(実数解)
この動画を見る
$ \dfrac{8^x+27^x}{12^x+18^x}=\dfrac{7}{6}$
これを解け(実数解)
指数法則の利用

単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2^x=2022$ , $2^y=674$
$3^{\frac{x}{x-y}} =?$
この動画を見る
$2^x=2022$ , $2^y=674$
$3^{\frac{x}{x-y}} =?$
簡単すぎた

単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 5^x=0.5^y=10000$である.
$\dfrac{1}{x}-\dfrac{1}{y}$はいくつであるか求めよ.
この動画を見る
$ 5^x=0.5^y=10000$である.
$\dfrac{1}{x}-\dfrac{1}{y}$はいくつであるか求めよ.
簡単すぎた

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$5^x=0.5^y=10000$
$\dfrac{1}{x}-\dfrac{1}{y}=?$
この動画を見る
$5^x=0.5^y=10000$
$\dfrac{1}{x}-\dfrac{1}{y}=?$
大学入試問題#164 防衛医科大学(2020) 指数の計算

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師:
ますただ
問題文全文(内容文):
$1 \leqq m,n$実数
$m^{\frac{n}{3}}+m^{-\frac{n}{3}}=\displaystyle \frac{3\sqrt{ 2 }}{2}$のとき
$mm^n-m^{-n}$の値を求めよ。
出典:2020年防衛医科大学 入試問題
この動画を見る
$1 \leqq m,n$実数
$m^{\frac{n}{3}}+m^{-\frac{n}{3}}=\displaystyle \frac{3\sqrt{ 2 }}{2}$のとき
$mm^n-m^{-n}$の値を求めよ。
出典:2020年防衛医科大学 入試問題
二項定理

基本問題

単元:
#数Ⅱ#式と証明#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
x,yを実数とする.
$ x^2+y^2=7 $
$ x^3+y^3=10 $である.
x+yはいくつであるか求めよ.
この動画を見る
x,yを実数とする.
$ x^2+y^2=7 $
$ x^3+y^3=10 $である.
x+yはいくつであるか求めよ.
福田の数学〜東北大学2022年文系第3問〜領域における最大

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
a,bを正の実数とし、xy平面上の直線$l:ax;by-2=0$を考える。
(1)直線lと原点の距離が2以上であり、直線lと直線x=1の交点のy座標が
2以上であるような点(a,b)の取りうる範囲Dを求め、ab平面上に図示せよ。
(2)点(a,b)が(1)で求めた領域Dを動くとする。このとき、
$3a+2b$を最大にするa,bの値と$3a+2b$の最大値を求めよ。
2022東北大学文系過去問
この動画を見る
a,bを正の実数とし、xy平面上の直線$l:ax;by-2=0$を考える。
(1)直線lと原点の距離が2以上であり、直線lと直線x=1の交点のy座標が
2以上であるような点(a,b)の取りうる範囲Dを求め、ab平面上に図示せよ。
(2)点(a,b)が(1)で求めた領域Dを動くとする。このとき、
$3a+2b$を最大にするa,bの値と$3a+2b$の最大値を求めよ。
2022東北大学文系過去問
