漸化式
【数B】数列:漸化式の基本を解説シリーズその1 等差型
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=a_n+1$で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る
$a_1=2,a_{n+1}=a_n+1$で定められる数列{$a_n$}の一般項を求めよ。
富山大 積分のフリしたただの漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=-1,b=0,c_1=4$
$a_{n+4}x^2+b_{n+1}x+c_{n+1}=\displaystyle \int_{2}^{x}{(a_n+b_n)t+n}at$
$a_n,b_n,c_n$の一般項を求めよ.
2021富山大過去問
この動画を見る
$a_1=-1,b=0,c_1=4$
$a_{n+4}x^2+b_{n+1}x+c_{n+1}=\displaystyle \int_{2}^{x}{(a_n+b_n)t+n}at$
$a_n,b_n,c_n$の一般項を求めよ.
2021富山大過去問
2021北海道大 連立漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=2,b_1=1$
$c_n=a_nb_n$
$a_{n+1}=2a_n+3b_n$
$b_{n+1}=a_n+2b_n$
①$c_2$
②$c_n$は偶数
③$n$が偶数なら$c_n$は28の倍数であることを示せ.
2021北海道大過去問
この動画を見る
$a_1=2,b_1=1$
$c_n=a_nb_n$
$a_{n+1}=2a_n+3b_n$
$b_{n+1}=a_n+2b_n$
①$c_2$
②$c_n$は偶数
③$n$が偶数なら$c_n$は28の倍数であることを示せ.
2021北海道大過去問
【数B】数列:漸化式の基本を解説シリーズその2 等比型
共通テスト2021年数学詳しい解説〜共通テスト2021年2B第4問〜数列
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\large第4問}$
初項3、交差$p$の等差数列を$\left\{a_n\right\}$とし、初項3、公比$r$の等比数列を$\left\{b_n\right\}$と
する。ただし、$p \ne 0$かつ$r \ne 0$とする。さらに、これらの数列が次を満たすとする。
$a_nb_{n+1}-2a_{n+1}b_n+3b_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$①
(1)$p$と$r$の値を求めよう。自然数$n$について、$a_n,a_{n+1},b_n$はそれぞれ
$a_n=\boxed{\ \ ア\ \ }+(n-1)p$ $\cdots$②
$a_{n+1}=\boxed{\ \ ア\ \ }+np$ $\cdots$③
$b_n=\boxed{\ \ イ\ \ }r^{n-1}$
と表される。$r \ne 0$により、すべての自然数$n$について、$b_n \ne 0$となる。
$\displaystyle \frac{b_{n+1}}{b_n}=r$であることから、①の両辺を$b_n$で割ることにより
$\boxed{\ \ ウ\ \ }a_{n+1}=r\left(a_n+\boxed{\ \ エ\ \ }\right)$ $\cdots$④
が成り立つことが分かる。④に②と③を代入すると
$\left(r-\boxed{\ \ オ\ \ }\right)pn=r\left(p-\boxed{\ \ カ\ \ }\right)+\boxed{\ \ キ\ \ }$ $\cdots$⑤
となる。⑤が全ての$n$で成り立つことおよび$p \ne 0$により、$r=\boxed{\ \ オ\ \ }$を得る。
さらに、このことから、$p=\boxed{\ \ ク\ \ }$を得る。
以上から、すべての自然数$n$について、$a_n$と$b_n$が正であることもわかる。
(2)$p=\boxed{\ \ ク\ \ },$ $r=\boxed{\ \ オ\ \ }$であるから、$\left\{a_n\right\},$ $\left\{b_n\right\}$の初項から第$n$項
までの和は、それぞれ次の式で与えられる。
$\sum_{k=1}^na_k=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}n\left(n+\boxed{\ \ サ\ \ }\right)$
$\sum_{k=1}^nb_k=\boxed{\ \ シ\ \ }\left(\boxed{\ \ オ\ \ }^n-\boxed{\ \ ス\ \ }\right)$
(3)数列$\left\{a_n\right\}$に対して、初項3の数列$\left\{c_n\right\}$が次を満たすとする。
$a_nc_{n+1}-4a_{n+1}c_n+3c_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑥
$a_n$が正であることから、⑥を変形して、$c_{n+1}=\displaystyle \frac{\boxed{\ \ セ\ \ }a_{n+1}}{a_n+\boxed{\ \ ソ\ \ }}c_n$を得る。
さらに、$p=\boxed{\ \ ク\ \ }$であることから、数列$\left\{c_n\right\}$は$\boxed{\boxed{\ \ タ\ \ }}$ことがわかる。
$\boxed{\boxed{\ \ タ\ \ }}$の解答群
⓪すべての項が同じ値をとる数列である
①公差が0でない等差数列である
②公比が1より大きい等比数列である
③公比が1より小さい等比数列である
④等差数列でも等比数列でもない
(4)$q,u$は定数で$q \ne 0$とする。数列$\left\{b_n\right\}$に対して、初項3の数列$\left\{d_n\right\}$が
次を満たすとする。
$d_nb_{n+1}-qd_{n+1}b_n+ub_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑦
$r=\boxed{\ \ オ\ \ }$であることから、⑦を変形して、$d_{n+1}=\displaystyle \frac{\boxed{\ \ チ\ \ }}{q}(d_n+u)$
を得る。したがって、数列$\left\{d_n\right\}$が、公比が0より大きく1より小さい
等比数列となるための必要十分条件は、$q \gt \boxed{\ \ ツ\ \ }$かつ$u=\boxed{\ \ テ\ \ }$
である。
2021共通テスト過去問
この動画を見る
${\large第4問}$
初項3、交差$p$の等差数列を$\left\{a_n\right\}$とし、初項3、公比$r$の等比数列を$\left\{b_n\right\}$と
する。ただし、$p \ne 0$かつ$r \ne 0$とする。さらに、これらの数列が次を満たすとする。
$a_nb_{n+1}-2a_{n+1}b_n+3b_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$①
(1)$p$と$r$の値を求めよう。自然数$n$について、$a_n,a_{n+1},b_n$はそれぞれ
$a_n=\boxed{\ \ ア\ \ }+(n-1)p$ $\cdots$②
$a_{n+1}=\boxed{\ \ ア\ \ }+np$ $\cdots$③
$b_n=\boxed{\ \ イ\ \ }r^{n-1}$
と表される。$r \ne 0$により、すべての自然数$n$について、$b_n \ne 0$となる。
$\displaystyle \frac{b_{n+1}}{b_n}=r$であることから、①の両辺を$b_n$で割ることにより
$\boxed{\ \ ウ\ \ }a_{n+1}=r\left(a_n+\boxed{\ \ エ\ \ }\right)$ $\cdots$④
が成り立つことが分かる。④に②と③を代入すると
$\left(r-\boxed{\ \ オ\ \ }\right)pn=r\left(p-\boxed{\ \ カ\ \ }\right)+\boxed{\ \ キ\ \ }$ $\cdots$⑤
となる。⑤が全ての$n$で成り立つことおよび$p \ne 0$により、$r=\boxed{\ \ オ\ \ }$を得る。
さらに、このことから、$p=\boxed{\ \ ク\ \ }$を得る。
以上から、すべての自然数$n$について、$a_n$と$b_n$が正であることもわかる。
(2)$p=\boxed{\ \ ク\ \ },$ $r=\boxed{\ \ オ\ \ }$であるから、$\left\{a_n\right\},$ $\left\{b_n\right\}$の初項から第$n$項
までの和は、それぞれ次の式で与えられる。
$\sum_{k=1}^na_k=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}n\left(n+\boxed{\ \ サ\ \ }\right)$
$\sum_{k=1}^nb_k=\boxed{\ \ シ\ \ }\left(\boxed{\ \ オ\ \ }^n-\boxed{\ \ ス\ \ }\right)$
(3)数列$\left\{a_n\right\}$に対して、初項3の数列$\left\{c_n\right\}$が次を満たすとする。
$a_nc_{n+1}-4a_{n+1}c_n+3c_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑥
$a_n$が正であることから、⑥を変形して、$c_{n+1}=\displaystyle \frac{\boxed{\ \ セ\ \ }a_{n+1}}{a_n+\boxed{\ \ ソ\ \ }}c_n$を得る。
さらに、$p=\boxed{\ \ ク\ \ }$であることから、数列$\left\{c_n\right\}$は$\boxed{\boxed{\ \ タ\ \ }}$ことがわかる。
$\boxed{\boxed{\ \ タ\ \ }}$の解答群
⓪すべての項が同じ値をとる数列である
①公差が0でない等差数列である
②公比が1より大きい等比数列である
③公比が1より小さい等比数列である
④等差数列でも等比数列でもない
(4)$q,u$は定数で$q \ne 0$とする。数列$\left\{b_n\right\}$に対して、初項3の数列$\left\{d_n\right\}$が
次を満たすとする。
$d_nb_{n+1}-qd_{n+1}b_n+ub_{n+1}=0$ $(n=1,2,3,\ldots)\cdots$⑦
$r=\boxed{\ \ オ\ \ }$であることから、⑦を変形して、$d_{n+1}=\displaystyle \frac{\boxed{\ \ チ\ \ }}{q}(d_n+u)$
を得る。したがって、数列$\left\{d_n\right\}$が、公比が0より大きく1より小さい
等比数列となるための必要十分条件は、$q \gt \boxed{\ \ ツ\ \ }$かつ$u=\boxed{\ \ テ\ \ }$
である。
2021共通テスト過去問
【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説
単元:
#大学入試過去問(数学)#数列#漸化式#数学(高校生)#駿台模試
指導講師:
理数個別チャンネル
問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
(i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
この動画を見る
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
(i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
ガウス記号・漸化式・合同式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$[(7+\sqrt{41}^{2021}]$を$2^{2021}$で割った余りを求めよ.
この動画を見る
$[(7+\sqrt{41}^{2021}]$を$2^{2021}$で割った余りを求めよ.
ヨビノリたくみ 東大 非典型的な漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.
(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.
2005東大過去問
この動画を見る
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.
(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.
2005東大過去問
千葉大 漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数$n\geqq 2$であり,$a_n=\dfrac{(1+\sqrt3)^n+(1-\sqrt3)^n}{4}$である.
$a_n$は整数であり,$a_n$を$3$で割った余りは$2$であることを示せ.
2013千葉大過去問
この動画を見る
整数$n\geqq 2$であり,$a_n=\dfrac{(1+\sqrt3)^n+(1-\sqrt3)^n}{4}$である.
$a_n$は整数であり,$a_n$を$3$で割った余りは$2$であることを示せ.
2013千葉大過去問
福井大(医)漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.
福井大(医)過去問
この動画を見る
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.
福井大(医)過去問
東京海洋大 漸化式と3次関数
単元:
#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数B#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$a_1=1$であり,$a_{n+1}=27^{n^2-3n-9}a_n$とする.
(1)一般項$a_n$を求めよ.
(2)$a_n$が最小となる値を求めよ.
2013東京海洋大過去問
この動画を見る
$n$は自然数とする.
$a_1=1$であり,$a_{n+1}=27^{n^2-3n-9}a_n$とする.
(1)一般項$a_n$を求めよ.
(2)$a_n$が最小となる値を求めよ.
2013東京海洋大過去問
東大 漸化式 整式の剰余
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^{n+1}$を$x^2-x-1$で割った余りを$a_n x+b_n$とする.
(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=a_n+b_n \\
b_{n+1}=a_n
\end{array}
\right.
\end{eqnarray}$ を示せ.
(2)$a_n$と$b_n$は自然数で,互いに素であることを示せ.
東大過去問
この動画を見る
$n$を自然数とする.
$x^{n+1}$を$x^2-x-1$で割った余りを$a_n x+b_n$とする.
(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=a_n+b_n \\
b_{n+1}=a_n
\end{array}
\right.
\end{eqnarray}$ を示せ.
(2)$a_n$と$b_n$は自然数で,互いに素であることを示せ.
東大過去問
東大 三角比と漸化式
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.
(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)
1994東大過去問
この動画を見る
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.
(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)
1994東大過去問
【数B】数列:基礎からわかる確率漸化式!!四面体の頂点を移動する点がn秒後に他の頂点にいる確率
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
四面体OABCの頂点を移動する点Pがある。 点Pは1つの頂点に達してから1秒後に、他の3つの頂点の いずれかに各々確率1/3で移動する。 最初に頂点Oにいた点Pがn秒後に頂点Aにいる確率Pnを求めよ。
この動画を見る
四面体OABCの頂点を移動する点Pがある。 点Pは1つの頂点に達してから1秒後に、他の3つの頂点の いずれかに各々確率1/3で移動する。 最初に頂点Oにいた点Pがn秒後に頂点Aにいる確率Pnを求めよ。
漸化式と素数
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1$であり,$a_{n+1}=2a_n+1$である.
$a_n$が素数なら$n$は素数であることを示せ.
この動画を見る
$a_1=1$であり,$a_{n+1}=2a_n+1$である.
$a_n$が素数なら$n$は素数であることを示せ.
弘前大 漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=2$,$a_{n+1}=\dfrac{n+2}{n}a_n+1$
一般項を求めよ.
弘前大過去問
この動画を見る
$a_1=2$,$a_{n+1}=\dfrac{n+2}{n}a_n+1$
一般項を求めよ.
弘前大過去問
漸化式と整数の融合問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=2$,$a_{n+1}=2^{n^2+2n-1}・a^2_n$
$a_n$の1の位が2になるのは$a_1$のみであることを示せ.
この動画を見る
$a_1=2$,$a_{n+1}=2^{n^2+2n-1}・a^2_n$
$a_n$の1の位が2になるのは$a_1$のみであることを示せ.
漸化式と整数問題の融合
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$a_1=10,a_{n+1}=2a_n+3^{n+1}$
$a_n$が7の倍数となるような$n$を求めよ.
この動画を見る
$n$は自然数である.
$a_1=10,a_{n+1}=2a_n+3^{n+1}$
$a_n$が7の倍数となるような$n$を求めよ.
一橋大 漸化式&対数
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.
(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$
1998一橋大過去問
この動画を見る
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.
(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$
1998一橋大過去問
【数B】数列:隣接三項間型(重解) 次の条件によって定められる数列{an}の一般項を求めよ。a[1]=1,a[2]=5,a[n+2]+8a[n+1]+16a[n]=0
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=5,a_{n+2}+8a_{n+1}-16a_n=0$
この動画を見る
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=5,a_{n+2}+8a_{n+1}-16a_n=0$
【数B】数列:隣接三項間型(解2つ) 次の条件によって定められる数列{an}の一般項を求めよ。a1=1,a2=4,a[n+2]+a[n+1]-2a[n]=0
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=4,a_{n+2}+a_{n+1}-2a_n=0$
この動画を見る
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=4,a_{n+2}+a_{n+1}-2a_n=0$
【数B】確率漸化式:ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率P[n]を求めよ。
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率$P_n$を求めよ。
この動画を見る
ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率$P_n$を求めよ。
【数B】確率漸化式:3つの数字2,3,4をn個並べてn桁の整数をつくる。その中で、各位の数字の和が偶数であるものの個数をa[n]とする。(1)a[n+1]をa[n]の式で表せ。(2)a[n]を求めよ
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
3つの数字2,3,4をn個並べてn桁の整数をつくる。その中で、各位の数字の和が偶数であるものの個数を$a_n$とする。
(1)$a_{n+1}$を$a_n$の式で表せ。
(2)$a_n$を求めよ
この動画を見る
3つの数字2,3,4をn個並べてn桁の整数をつくる。その中で、各位の数字の和が偶数であるものの個数を$a_n$とする。
(1)$a_{n+1}$を$a_n$の式で表せ。
(2)$a_n$を求めよ
【数B】確率漸化式:1回の試行で事象Aの起こる確率が1/3であるとする。この試行をn回行うときに奇数回Aが起こる確率をP[n]とする。(1)P[n+1]をP[n]の式で表せ。(2)P[n]を求めよ。
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
1回の試行で事象Aの起こる確率が$\dfrac{1}{3}$であるとする。この試行をn回行うときに奇数回Aが起こる確率を$P_n$とする。
(1)$P_{n+1}$を$P_n$の式で表せ。
(2)$P_n$を求めよ。
この動画を見る
1回の試行で事象Aの起こる確率が$\dfrac{1}{3}$であるとする。この試行をn回行うときに奇数回Aが起こる確率を$P_n$とする。
(1)$P_{n+1}$を$P_n$の式で表せ。
(2)$P_n$を求めよ。
【数B】確率漸化式:さいころをn回投げたとき1の目が偶数回出る確率をp[n]とする(中略) (1)p1を求めよ。(2)p[n+1]をp[n]で表せ。(3)p[n] (n=1,2,3,..)を求めよ。
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
さいころをn回投げたとき1の目が偶数回出る確率を$p_n$とする。ただし、1の目が1回も出なかった場合は偶数回出たと考えることにする。
(1)$p_1$を求めよ。
(2)$p_{n+1}$を$p_n$で表せ。
(3)$p_n$ (n=1,2,3,..)を求めよ。
この動画を見る
さいころをn回投げたとき1の目が偶数回出る確率を$p_n$とする。ただし、1の目が1回も出なかった場合は偶数回出たと考えることにする。
(1)$p_1$を求めよ。
(2)$p_{n+1}$を$p_n$で表せ。
(3)$p_n$ (n=1,2,3,..)を求めよ。
北里大2020 分数型漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=2,a_{n+1}=\dfrac{4a_2+2}{a_n+5}$
一般項を求めよ.
2020北里大過去問
この動画を見る
$a_1=2,a_{n+1}=\dfrac{4a_2+2}{a_n+5}$
一般項を求めよ.
2020北里大過去問
三乗根と漸化式(類)一橋:順天堂(医)
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$\alpha=\sqrt[3]{9+4\sqrt5},\beta=\sqrt[3]{9-4\sqrt5}$
$a_n=\alpha^{2n-1}+\beta^{2n-1}$である.
$a_{n+4}-a_n$が7の倍数であることを示せ.
一橋:順天堂(医)過去問
この動画を見る
$n$は自然数とする.
$\alpha=\sqrt[3]{9+4\sqrt5},\beta=\sqrt[3]{9-4\sqrt5}$
$a_n=\alpha^{2n-1}+\beta^{2n-1}$である.
$a_{n+4}-a_n$が7の倍数であることを示せ.
一橋:順天堂(医)過去問
首都大学東京 漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n a_k=n^4+6n^3+11n^2+6n$
①$a_n$を$n$の式で表せ.
②$\displaystyle \sum_{k=1}^{\infty}\dfrac{1}{a_k}$
2018首都大学東京過去問
この動画を見る
$\displaystyle \sum_{k=1}^n a_k=n^4+6n^3+11n^2+6n$
①$a_n$を$n$の式で表せ.
②$\displaystyle \sum_{k=1}^{\infty}\dfrac{1}{a_k}$
2018首都大学東京過去問
広島県立大 漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n \gt 0,S_n=\displaystyle \sum_{k=1}^n a_k$
$a_1^3+a_2^3・・・・・・+a_n^3=2S_n^2$とする.
(1)$a_n^2+2a_n=4S_n$を示せ.
(2)$a_n$を$n$の式で表せ.
1996広島県立大過去問
この動画を見る
$a_n \gt 0,S_n=\displaystyle \sum_{k=1}^n a_k$
$a_1^3+a_2^3・・・・・・+a_n^3=2S_n^2$とする.
(1)$a_n^2+2a_n=4S_n$を示せ.
(2)$a_n$を$n$の式で表せ.
1996広島県立大過去問
群馬大(医)漸化式
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=15$であり,$n$を自然数とする.
$a_n-2a_{n-1}+4^n-1$
(1)$a_n$を$n$の式で表せ.
(2)$\displaystyle \sum_{n=1}^{\infty}\dfrac{2^n}{a_n}$
1992群馬大(医)過去問
この動画を見る
$a_1=15$であり,$n$を自然数とする.
$a_n-2a_{n-1}+4^n-1$
(1)$a_n$を$n$の式で表せ.
(2)$\displaystyle \sum_{n=1}^{\infty}\dfrac{2^n}{a_n}$
1992群馬大(医)過去問