関数の極限

福田のおもしろ数学169〜log x/xの極限

単元:
#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}$=0 を証明せよ。
この動画を見る
$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}$=0 を証明せよ。
福田のおもしろ数学164〜階乗とn乗の商の極限

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\lim_{n \to \infty}\frac{n!}{3^n}$と$\displaystyle\lim_{n \to \infty}\frac{n!}{n^n}$ を求めなさい。
この動画を見る
$\displaystyle\lim_{n \to \infty}\frac{n!}{3^n}$と$\displaystyle\lim_{n \to \infty}\frac{n!}{n^n}$ を求めなさい。
大学入試問題#846「基本問題」 #岩手大学(2017) #極限

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e$を利用して
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\tan x-\sin x}{x^4}\{log(x^2+x^3)-log\ x^2\}$を求めよ
出典:2017年岩手大学 入試問題
この動画を見る
$\displaystyle \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e$を利用して
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\tan x-\sin x}{x^4}\{log(x^2+x^3)-log\ x^2\}$を求めよ
出典:2017年岩手大学 入試問題
#筑波大学(1996) #極限 #Shorts

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } (\sqrt{ x^2+x+1 }-x)$
出典:1996年筑波大学
この動画を見る
$\displaystyle \lim_{ x \to \infty } (\sqrt{ x^2+x+1 }-x)$
出典:1996年筑波大学
#岩手大学(2013) #極限 #Shorts

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ 3x+4 }-2}{\sin3x}$
出典:2013年岩手大学
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ 3x+4 }-2}{\sin3x}$
出典:2013年岩手大学
#茨城大学(2023) #極限 #Shorts

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x}log(\displaystyle \frac{e^x+1}{2})$
出典:2023年茨城大学
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x}log(\displaystyle \frac{e^x+1}{2})$
出典:2023年茨城大学
#筑波大学(2020) #極限 #Shorts

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{x\ \sin\ x}{1-\cos\ x}$
出典:2020年筑波大学推薦医学科
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{x\ \sin\ x}{1-\cos\ x}$
出典:2020年筑波大学推薦医学科
「安定の良問」 by にっし~Diaryさん #極限

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x\{\sin(\displaystyle \frac{1}{x})-\sin(\sin(\displaystyle \frac{1}{x}))\}}{1-x\ \sin(\displaystyle \frac{1}{x})}$
この動画を見る
$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x\{\sin(\displaystyle \frac{1}{x})-\sin(\sin(\displaystyle \frac{1}{x}))\}}{1-x\ \sin(\displaystyle \frac{1}{x})}$
福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m) \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
この動画を見る
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m) \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

単元:
#大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
この動画を見る
xy平面上の双曲線
$\frac{x^2}{36}-\frac{y^2}{64}=-1$
の焦点の座標を求めなさい。
次の極限値を求めなさい。
$\displaystyle \lim_{ x \to 1 }\displaystyle \frac{x^2+2x-3}{\sqrt[ 3 ]{ x }-1}$
中学からの極限(応用編)~全国入試問題解法 #shorts #数学 #高校入試 #頭の体操

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{x^2+2x-3}{x^2+x-2}$を求めよ.
この動画を見る
$ \displaystyle \lim_{x \to 1}\dfrac{x^2+2x-3}{x^2+x-2}$を求めよ.
中学からの極限(発展編)~全国入試問題解法 #shorts #数学 #極限 #頭の体操

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{ax-1}{x-a}$を求めよ.
この動画を見る
$ \displaystyle \lim_{x \to 1}\dfrac{ax-1}{x-a}$を求めよ.
中学からの極限(基礎編)!~全国入試問題解法 #数学 #極限 #微分積分 #頭の体操

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to \infty}\dfrac{5x^2+x+4}{x^2+2x+3}$を求めよ.
この動画を見る
$ \displaystyle \lim_{x \to \infty}\dfrac{5x^2+x+4}{x^2+2x+3}$を求めよ.
中学からの極限(徹底編)~全国入試問題解法 #shorts #数学 #高校入試 #動体視力

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{(x,y)\to (0,0)}\dfrac{x^2-y^2}{x^2+y^2}$
次の関数の極限を調べよ.
この動画を見る
$ \displaystyle \lim_{(x,y)\to (0,0)}\dfrac{x^2-y^2}{x^2+y^2}$
次の関数の極限を調べよ.
これもオイラーの公式っていうんだ!

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \prod_{n=1}^\infty cos(\frac x{2^n}) = cos\frac x{2}cos\frac x{4} cos\frac x{8} \cdots $
$cos\frac x{2^n} = \frac {sinx}x $
これを証明せよ.
この動画を見る
$\displaystyle \prod_{n=1}^\infty cos(\frac x{2^n}) = cos\frac x{2}cos\frac x{4} cos\frac x{8} \cdots $
$cos\frac x{2^n} = \frac {sinx}x $
これを証明せよ.
福田の数学〜曲線の長さの計算は大丈夫?〜明治大学2023年理工学部第2問〜曲線の長さと極限

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$f(x)=\dfrac{1}{8}x^2-logx(x \gt0)$とし、座標平面上の曲線y=f(x)をCとする。ただし、logxは自然対数を表す。関数f(x)は$x=\fbox{あ}$で最小値をとる。曲線C上の点A(1,f(1))における曲線Cの接線をlとすると、lの方程式は$y=\fbox{い}$である。
曲線Cと接線lおよび直線x=2で囲まれた図形の面積は$\fbox{う}$である。また、点$(t,f(t))(t \lt1)$をPとし、点Aから点Pまでの曲線Cの長さをL(t)とすると$L(2)=\fbox{え}$である。また、$\displaystyle \lim_{ t \to 1+0 } \dfrac{L(t)}{t-1}= \fbox{お}$である。
2023明治大学理工学部過去問
この動画を見る
$f(x)=\dfrac{1}{8}x^2-logx(x \gt0)$とし、座標平面上の曲線y=f(x)をCとする。ただし、logxは自然対数を表す。関数f(x)は$x=\fbox{あ}$で最小値をとる。曲線C上の点A(1,f(1))における曲線Cの接線をlとすると、lの方程式は$y=\fbox{い}$である。
曲線Cと接線lおよび直線x=2で囲まれた図形の面積は$\fbox{う}$である。また、点$(t,f(t))(t \lt1)$をPとし、点Aから点Pまでの曲線Cの長さをL(t)とすると$L(2)=\fbox{え}$である。また、$\displaystyle \lim_{ t \to 1+0 } \dfrac{L(t)}{t-1}= \fbox{お}$である。
2023明治大学理工学部過去問
数学どうにかしたい人へ

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
大学入試問題#627「よくみる形」 横浜市立医学部(2006) #定積分 #極限

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{1}^{n} \displaystyle \frac{1}{x^3}e^{-\frac{1}{x}} dx$
出典:2006年横浜市立大学医学部 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{1}^{n} \displaystyle \frac{1}{x^3}e^{-\frac{1}{x}} dx$
出典:2006年横浜市立大学医学部 入試問題
【対数の微分】対数関数の微分の導出について解説しました!【数学III】

大学入試問題#623「えぐいの見た目だけ」 岩手大学(2021) #極限 僚太さんの紹介

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (\displaystyle \frac{x\ \tan\ x}{\sqrt{ \cos2x }-\cos\ x}+\displaystyle \frac{x}{\tan2x})$
出典:2021年岩手大学 入試問題
この動画を見る
$\displaystyle \lim_{ x \to 0 } (\displaystyle \frac{x\ \tan\ x}{\sqrt{ \cos2x }-\cos\ x}+\displaystyle \frac{x}{\tan2x})$
出典:2021年岩手大学 入試問題
大学入試問題#621「これは、ぜひ挑戦してほしい」 防衛医科大学(2016) #極限

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } \{\displaystyle \frac{2x-2}{2x-1}-\displaystyle \frac{2}{(2x-1)^2}\}^{3x}$
出典:2016年防衛医科大学 入試問題
この動画を見る
$\displaystyle \lim_{ x \to \infty } \{\displaystyle \frac{2x-2}{2x-1}-\displaystyle \frac{2}{(2x-1)^2}\}^{3x}$
出典:2016年防衛医科大学 入試問題
【三角関数の微分】三角関数の微分の導出について解説しました!【数学III】

大学入試問題#617「極限2本」 関西大学(2021) #極限

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師:
ますただ
問題文全文(内容文):
(1)$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x}(\displaystyle \frac{1}{3-\sin2x}-\displaystyle \frac{1}{3+\sin2x})$
(2)$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x^2}(\displaystyle \frac{1}{\sqrt{ 3-\sin^22x }}-\displaystyle \frac{1}{\sqrt{ 3+\sin^22x }})$
出典:2021年関西大学 入試問題
この動画を見る
(1)$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x}(\displaystyle \frac{1}{3-\sin2x}-\displaystyle \frac{1}{3+\sin2x})$
(2)$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x^2}(\displaystyle \frac{1}{\sqrt{ 3-\sin^22x }}-\displaystyle \frac{1}{\sqrt{ 3+\sin^22x }})$
出典:2021年関西大学 入試問題
大学入試問題#603「もう飽きた?」 千葉大学(1989) #極限

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$P_n=\sqrt[ n ]{ \displaystyle \frac{(3n)!}{(2n)!} }$とおく
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{P_n}{n}$を求めよ
(2)$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{n+2}{n})^{P_n}$を求めよ
出典:1989年千葉大学 入試問題
この動画を見る
$P_n=\sqrt[ n ]{ \displaystyle \frac{(3n)!}{(2n)!} }$とおく
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{P_n}{n}$を求めよ
(2)$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{n+2}{n})^{P_n}$を求めよ
出典:1989年千葉大学 入試問題
福田の数学〜千葉大学2023年第4問〜関数の増減と極限

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つの実数$a$,$b$は0<$b$<$a$を満たすとする。関数
$f(x)$=$\displaystyle\frac{1}{b}\left(e^{-(a-b)x}-e^{-ax}\right)$
の最大値を$M(a,b)$、最大値をとるときの$x$の値を$X(a,b)$と表す。ここで、$e$は自然対数の底である。
(1)$X(a,b)$を求めよ。
(2)極限$\displaystyle\lim_{b \to +0}X(a,b)$ を求めよ。
(3)極限$\displaystyle\lim_{b \to +0}M(a,b)$ を求めよ。
この動画を見る
$\Large\boxed{4}$ 2つの実数$a$,$b$は0<$b$<$a$を満たすとする。関数
$f(x)$=$\displaystyle\frac{1}{b}\left(e^{-(a-b)x}-e^{-ax}\right)$
の最大値を$M(a,b)$、最大値をとるときの$x$の値を$X(a,b)$と表す。ここで、$e$は自然対数の底である。
(1)$X(a,b)$を求めよ。
(2)極限$\displaystyle\lim_{b \to +0}X(a,b)$ を求めよ。
(3)極限$\displaystyle\lim_{b \to +0}M(a,b)$ を求めよ。
福田の数学〜東京医科歯科大学2023年医学部第3問〜積分で定義された関数と極限

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
この動画を見る
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
電気通信大学2014年 #極限 #Shorts

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$
出典:2014年電気通信大学
この動画を見る
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$
出典:2014年電気通信大学
関西医科大学 #極限 #Shorts

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \pi } \displaystyle \frac{\sin\ x}{x^2-\pi^2}$を求めよ
出典:関西医科大学
この動画を見る
$\displaystyle \lim_{ x \to \pi } \displaystyle \frac{\sin\ x}{x^2-\pi^2}$を求めよ
出典:関西医科大学
長岡技術科大 ナイスな問題

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
2008長岡技術科学大学過去問題
①$\displaystyle\sum_{n=2}^{\infty}\frac{1}{n^2-\frac{1}{4}}$を求めよ
②$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}<\frac{5}{3}$を示せ
この動画を見る
2008長岡技術科学大学過去問題
①$\displaystyle\sum_{n=2}^{\infty}\frac{1}{n^2-\frac{1}{4}}$を求めよ
②$\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}<\frac{5}{3}$を示せ