不定積分
大学入試問題#572「初手どうすべきか」 By 英語orドイツ語さん #不定積分
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int (log\ x+\displaystyle \frac{1}{x})log(x+1) dx$
この動画を見る
$\displaystyle \int (log\ x+\displaystyle \frac{1}{x})log(x+1) dx$
大学入試問題#569「これは至高の積分」 By Picmin3daisukiさん #不定積分
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x\ \cos\ 2x}{2\sin(x+\displaystyle \frac{\pi}{4})+\cos(x-\displaystyle \frac{\pi}{4})-\cos(3x+\displaystyle \frac{\pi}{4})}\ dx$
この動画を見る
$\displaystyle \int \displaystyle \frac{x\ \cos\ 2x}{2\sin(x+\displaystyle \frac{\pi}{4})+\cos(x-\displaystyle \frac{\pi}{4})-\cos(3x+\displaystyle \frac{\pi}{4})}\ dx$
大学入試問題#567「定数aの処理の難しさ」 東京大学1938 #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int x^2(x^2+a^2)^{\frac{1}{2}}\ dx$
出典:1938年東京帝国大学 入試問題
この動画を見る
$\displaystyle \int x^2(x^2+a^2)^{\frac{1}{2}}\ dx$
出典:1938年東京帝国大学 入試問題
大学入試問題#566「計算力勝負」 京都帝国大学(1936) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^3}{x^2-3x+2}\ dx$
出典:1936年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{x^3}{x^2-3x+2}\ dx$
出典:1936年京都帝国大学 入試問題
大学入試問題#565「これは落とせない」 京都帝国大学(1935) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x-1}{e^x+1}\ dx$
出典:1935年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{e^x-1}{e^x+1}\ dx$
出典:1935年京都帝国大学 入試問題
大学入試問題#564「構想力が鍛えられる問題!」 東京帝国大学(1934) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3x+4}{\sqrt{ x^2+2x+5 }}\ dx$
出典:1934年東京帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{3x+4}{\sqrt{ x^2+2x+5 }}\ dx$
出典:1934年東京帝国大学 入試問題
大学入試問題#560「初手が大事」 同志社大学(2016) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \sqrt{ e^{2x}+1 }\ dx$
出典:2016年同志社大学 入試問題
この動画を見る
$\displaystyle \int \sqrt{ e^{2x}+1 }\ dx$
出典:2016年同志社大学 入試問題
大学入試問題#556「技はかかりそうだけど、正面突破」 東京帝国大学大正14年 #定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x+\sin\ x}{1+\cos\ x} dx$
出典:大正14年東京大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x+\sin\ x}{1+\cos\ x} dx$
出典:大正14年東京大学 入試問題
大学入試問題#553「誘導なかったら、萎える」 東邦大学医学部(2013) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師:
ますただ
問題文全文(内容文):
(1)
$\alpha=\displaystyle \frac{\pi}{4},\beta=\displaystyle \frac{3\pi}{4}$のとき
$\tan\displaystyle \frac{\alpha}{2}+\tan\displaystyle \frac{\beta}{2}$の値を求めよ
(2)
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{x^2-\sqrt{ 2 }x+1}$
出典:2013年東邦大学医学部 入試問題
この動画を見る
(1)
$\alpha=\displaystyle \frac{\pi}{4},\beta=\displaystyle \frac{3\pi}{4}$のとき
$\tan\displaystyle \frac{\alpha}{2}+\tan\displaystyle \frac{\beta}{2}$の値を求めよ
(2)
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{x^2-\sqrt{ 2 }x+1}$
出典:2013年東邦大学医学部 入試問題
大学入試問題#543「見た目は次数だけ」 前橋工科大学(2023) #定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt[ 4 ]{ 3 }} (x^7-3x^3)e^{-\frac{x^4}{4}}\ dx$
出典:2023年前橋工科大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\sqrt[ 4 ]{ 3 }} (x^7-3x^3)e^{-\frac{x^4}{4}}\ dx$
出典:2023年前橋工科大学 入試問題
大学入試問題#529「教科書に載ってそう」 北見工業大学(2012) #微積
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\cos\ x+\displaystyle \int_{0}^{x} e^{t-x}f(t)\ dt$のとき$f(x)$を求めよ
出典:2012年北見工業大学 入試問題
この動画を見る
$f(x)=\cos\ x+\displaystyle \int_{0}^{x} e^{t-x}f(t)\ dt$のとき$f(x)$を求めよ
出典:2012年北見工業大学 入試問題
大学入試問題#526「イカツイのは見た目だけ」 久留米大学医学部(2017) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#久留米大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{4}{x^7(x^{-6}+1)^{\frac{1}{3}}} dx$
出典:2017年久留米大学医学部 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{4}{x^7(x^{-6}+1)^{\frac{1}{3}}} dx$
出典:2017年久留米大学医学部 入試問題
大学入試問題#498「類題はたくさん」 信州大学後期2011 #不定積分3
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(x+5)^2}$
出典:2011年信州大学後期 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{dx}{x(x+5)^2}$
出典:2011年信州大学後期 入試問題
大学入試問題#494「基本問題」 信州大学後期(2011) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \sin^4x\ dx$
出典:2011年信州大学後期 入試問題
この動画を見る
$\displaystyle \int \sin^4x\ dx$
出典:2011年信州大学後期 入試問題
大学入試問題#493「詰みまでの構想力が必要」 東京理科大学(2001) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int (t\sqrt{ 1+t^2 }+\displaystyle \frac{t^3}{\sqrt{ 1+t^2 }})dt$
出典:2001年東京理科大学 入試問題
この動画を見る
$\displaystyle \int (t\sqrt{ 1+t^2 }+\displaystyle \frac{t^3}{\sqrt{ 1+t^2 }})dt$
出典:2001年東京理科大学 入試問題
大学入試問題#491「綺麗な問題」 立教大学 類題 By 英語orドイツ語シはBかHか さん #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)
$\displaystyle \int xe^{-x}log(x+1)dx$
(2)
$\displaystyle \int \displaystyle \frac{log\ x-1}{(log\ x+x)^2}dx$
出典:立教大学 入試問題
この動画を見る
(1)
$\displaystyle \int xe^{-x}log(x+1)dx$
(2)
$\displaystyle \int \displaystyle \frac{log\ x-1}{(log\ x+x)^2}dx$
出典:立教大学 入試問題
大学入試問題#490「よくみる形」 信州大学後期(2015) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ#大阪市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int x(log\ x)^2 dx$
出典:2015年信州大学後期 入試問題
この動画を見る
$\displaystyle \int x(log\ x)^2 dx$
出典:2015年信州大学後期 入試問題
大学入試レベル超え「もはや奨励会員が解く図式」 By 田中田中さん
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2+x+1}{(x+1)^2} e^xlog(x+1)dx$
この動画を見る
$\displaystyle \int \displaystyle \frac{x^2+x+1}{(x+1)^2} e^xlog(x+1)dx$
大学入試問題#474「沼にはまりがち」 信州大学後期(2011) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(x+1)^2}$
出典:2011年信州大学後期 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{dx}{x(x+1)^2}$
出典:2011年信州大学後期 入試問題
大学入試問題#473「計算は大変かもしれない」 信州大学 理・医 (2011) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int log(1+\sqrt{ x }) dx$
出典:2011年信州大学 入試問題
この動画を見る
$\displaystyle \int log(1+\sqrt{ x }) dx$
出典:2011年信州大学 入試問題
大学入試問題#472「最後の計算量を減らすには?」 弘前大学(2012) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{4x}}{e^x+1} dx$
出典:2012年弘前大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{e^{4x}}{e^x+1} dx$
出典:2012年弘前大学 入試問題
大学入試問題#471「深夜1時でストック0」 信州大学後期(2013) 不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\cos^3\ x}{\sin^2\ x} dx$
出典:2013年信州大学後期 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{\cos^3\ x}{\sin^2\ x} dx$
出典:2013年信州大学後期 入試問題
大学入試問題#468「パズルで遊ぶ感じ」 岩手大学(2022) 微積の応用
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)$:微分可能
$g(x)=f(x)e^{-x}$
(1)
$f'(x)=f(x)+g'(x)e^x$を示せ
(2)
$a$:定数
$f(x)=\displaystyle \int_{a}^{x} (f(t)-4te^{-t}) dt$
$f(0)=1$のとき$f(x),a$を求めよ
出典:2022年岩手大学 入試問題
この動画を見る
$f(x)$:微分可能
$g(x)=f(x)e^{-x}$
(1)
$f'(x)=f(x)+g'(x)e^x$を示せ
(2)
$a$:定数
$f(x)=\displaystyle \int_{a}^{x} (f(t)-4te^{-t}) dt$
$f(0)=1$のとき$f(x),a$を求めよ
出典:2022年岩手大学 入試問題
大学入試問題#464「誘導の力は偉大」 神戸大学(2000) #不定積分 #積分の応用
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{x^3(1-x)}$
(1)
$f(x)=\displaystyle \frac{a_1}{x}+\displaystyle \frac{a_2}{x^2}+\displaystyle \frac{a_3}{x^3}+\displaystyle \frac{b}{1-x}$
とおくとき、定数$a_1,a_2,a_3,b$を求めよ
(2)
$\displaystyle \int f(x) dx$
(3)
$\displaystyle \int \displaystyle \frac{dx}{x^P(1-x)}(P=1,2,3,・・・)$
出典:2000年神戸大学 入試問題
この動画を見る
$f(x)=\displaystyle \frac{1}{x^3(1-x)}$
(1)
$f(x)=\displaystyle \frac{a_1}{x}+\displaystyle \frac{a_2}{x^2}+\displaystyle \frac{a_3}{x^3}+\displaystyle \frac{b}{1-x}$
とおくとき、定数$a_1,a_2,a_3,b$を求めよ
(2)
$\displaystyle \int f(x) dx$
(3)
$\displaystyle \int \displaystyle \frac{dx}{x^P(1-x)}(P=1,2,3,・・・)$
出典:2000年神戸大学 入試問題
右左どっちでできた問題がヤバい...
大学入試問題#461「どう処理すべきか」 関西大学(2009) #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{-2x}}{1+e^{-x}} dx$
出典:2009年関西大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{e^{-2x}}{1+e^{-x}} dx$
出典:2009年関西大学 入試問題
【数Ⅲ】三角関数の積分【半角の公式・積和の公式を使いこなせ】
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
めいちゃんねる
問題文全文(内容文):
$(1)\displaystyle \int \sin^{\Box}x dx,\displaystyle \int \cos^{\triangle}x dxの計算をせよ.$
$ \displaystyle \int \cos \Box x cos \triangle x dx,\displaystyle \int \sin \Box x \sin \triangle x dx,\displaystyle \int \sin \Box x cos \triangle x dxの計算をせよ.$
この動画を見る
$(1)\displaystyle \int \sin^{\Box}x dx,\displaystyle \int \cos^{\triangle}x dxの計算をせよ.$
$ \displaystyle \int \cos \Box x cos \triangle x dx,\displaystyle \int \sin \Box x \sin \triangle x dx,\displaystyle \int \sin \Box x cos \triangle x dxの計算をせよ.$
【数Ⅲ】置換積分【理屈と手順を分けて考える。】
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int 2x(x^2+1)^3 dxを求めよ.$
$ (2)\displaystyle \int \dfrac{x}{x^2+1}dxを求めよ.$
$ (3)\displaystyle \int_{1}^{2}\dfrac{x}{x^2+1}dxを求めよ.$
$ (4)\displaystyle \int_{0}^{1} x\sqrt{2x+1}dxを求めよ.$
この動画を見る
$ (1)\displaystyle \int 2x(x^2+1)^3 dxを求めよ.$
$ (2)\displaystyle \int \dfrac{x}{x^2+1}dxを求めよ.$
$ (3)\displaystyle \int_{1}^{2}\dfrac{x}{x^2+1}dxを求めよ.$
$ (4)\displaystyle \int_{0}^{1} x\sqrt{2x+1}dxを求めよ.$
大学入試数学#443「とにかく受験生の心を折りたい積分」 東北医科薬科大学2020 #不定積分
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int xe^{-x}\sin\ x\ dx$
出典:2020年東北医科薬科大学 入試問題
この動画を見る
$\displaystyle \int xe^{-x}\sin\ x\ dx$
出典:2020年東北医科薬科大学 入試問題
大学入試問題#439「国立大学らしい綺麗な問題」 群馬大学(2015) #微分方程式
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{x} \sqrt{ 1+\{f'(t)\}^2 }dt=-e^{-x}+f(x)$
(1)
$f(x)$を求めよ。
(2)
$\displaystyle \int_{0}^{1} x\sqrt{ 1+\{f'(x)\}^2 }\ dx$
出典:2015年群馬大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{x} \sqrt{ 1+\{f'(t)\}^2 }dt=-e^{-x}+f(x)$
(1)
$f(x)$を求めよ。
(2)
$\displaystyle \int_{0}^{1} x\sqrt{ 1+\{f'(x)\}^2 }\ dx$
出典:2015年群馬大学 入試問題