定積分
定積分
青山学院大学(2007年) #Shorts

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{x^2+1}{x+1} dx$
出典:2007年青山学院大学
この動画を見る
$\displaystyle \int_{0}^{4} \displaystyle \frac{x^2+1}{x+1} dx$
出典:2007年青山学院大学
大学入試問題#昭和大#604「nの計算丁寧に」 昭和大学医学部(2014) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#昭和大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^n dx$
$n$自然数
出典:2014年昭和大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} x^2(1-x)^n dx$
$n$自然数
出典:2014年昭和大学 入試問題
大学入試問題#601「これは落としたくないかも」 広島大学後期(2014) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x)=x\ log\ x$のとき
$(\displaystyle \frac{1}{e} \leqq x \leqq )$
$\displaystyle \int_{0}^{e} f^{-1}(x) dx$を求めよ
出典:2014年広島大学後期 入試問題
この動画を見る
$f(x)=x\ log\ x$のとき
$(\displaystyle \frac{1}{e} \leqq x \leqq )$
$\displaystyle \int_{0}^{e} f^{-1}(x) dx$を求めよ
出典:2014年広島大学後期 入試問題
大学入試問題#599「King-propertyは使ってません」 南山大学(2013) 定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師:
ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{-a}^{a} \displaystyle \frac{|x|e^x}{(1+e^x)^2} dx$
出典:2013年南山大学 入試問題
この動画を見る
$a \gt 0$
$\displaystyle \int_{-a}^{a} \displaystyle \frac{|x|e^x}{(1+e^x)^2} dx$
出典:2013年南山大学 入試問題
大学入試問題#598「計算が大変でした」 関西大学(2009) #区分求積法

単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n-k}{n\sqrt{ 3n^2+k^2 }}$
出典:2009年関西大学 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n-k}{n\sqrt{ 3n^2+k^2 }}$
出典:2009年関西大学 入試問題
福田の数学〜東京医科歯科大学2023年医学部第3問〜積分で定義された関数と極限

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
この動画を見る
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
大学入試問題#593「計算ミスに気をつける」 福島大学(1987) #極限

単元:
#大学入試過去問(数学)#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n}{(2n+k)^2}log\displaystyle \frac{n+2k}{n}$
出典:1987年福島大学 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n}{(2n+k)^2}log\displaystyle \frac{n+2k}{n}$
出典:1987年福島大学 入試問題
大学入試問題#594「解法が見えると計算に萎えそう」 南山大学(2019) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\cos^3\theta\sin\theta)e^{-\cos\theta}d\theta$
出典:2019年南山大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\cos^3\theta\sin\theta)e^{-\cos\theta}d\theta$
出典:2019年南山大学 入試問題
大学入試問題#592「カップラーメンができる前には解きたい」 北海学園大学(2019) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \tan^3x\ dx$
出典:2019年北海学園大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} \tan^3x\ dx$
出典:2019年北海学園大学 入試問題
大学入試問題#590「見た目以上に難しめ」 横浜市立大学(2020) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \displaystyle \frac{\cos^2\ x}{\sin^3\ x} dx$
出典:2020年横浜市立大学医理学部 入試問題
この動画を見る
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \displaystyle \frac{\cos^2\ x}{\sin^3\ x} dx$
出典:2020年横浜市立大学医理学部 入試問題
この積分は難問「もはや積分偏差値70over」 By 英語orドイツ語シはBかHか さん

単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x|x|(2x^2+1)e^{2x^2}}{2x(xe^{x^2}-1)+e^{-x^2}} dx$
この動画を見る
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x|x|(2x^2+1)e^{2x^2}}{2x(xe^{x^2}-1)+e^{-x^2}} dx$
会津大学2014 #定積分 #shorts

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} e^x\sqrt{ e^x-1 }\ dx$
出典:2019年会津大学
この動画を見る
$\displaystyle \int_{0}^{1} e^x\sqrt{ e^x-1 }\ dx$
出典:2019年会津大学
大学入試問題#587「たぶん基本問題」 広島市立大学(2013) #不定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \sqrt[3]{ x^5+x^3 }\ dx$
出典:2013年広島市立大学 入試問題
この動画を見る
$\displaystyle \int \sqrt[3]{ x^5+x^3 }\ dx$
出典:2013年広島市立大学 入試問題
大学入試問題#585「気付けば暗算」 同志社大学(2004) #極限

単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ n }\sin(\displaystyle \frac{1}{n})\}\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{\sqrt{ n+k }}$
出典:2004年同志社大学 入試問題
この動画を見る
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ n }\sin(\displaystyle \frac{1}{n})\}\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{\sqrt{ n+k }}$
出典:2004年同志社大学 入試問題
大学入試問題#582「ガチンコでぶつかると危険」 東京帝国大学(1946) 不定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x-\sqrt{ x^2-1 }}$
出典:1946年東京帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{dx}{x-\sqrt{ x^2-1 }}$
出典:1946年東京帝国大学 入試問題
東邦大学医学部(2011) #Shorts #King_property #キングプロパティ

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x}{\sin\ x+\cos\ x} dx$
出典:2011年東邦大学医学部 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\ x}{\sin\ x+\cos\ x} dx$
出典:2011年東邦大学医学部 入試問題
#57数検準1級1次 #定積分

単元:
#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} (\displaystyle \frac{x^2}{2}+3x)e^{\frac{x}{2}}\ dx$
出典:数検準1級1次
この動画を見る
$\displaystyle \int_{0}^{2} (\displaystyle \frac{x^2}{2}+3x)e^{\frac{x}{2}}\ dx$
出典:数検準1級1次
福田の数学〜筑波大学2023年理系第4問〜定積分と不等式と回転体の体積

単元:
#大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#筑波大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ a, bを実数とし、$f(x)$=$x$+$a\sin x$, $g(x)$=$b\cos x$とする。
(1)定積分$\displaystyle\int_{-\pi}^{\pi}$$f(x)g(x)dx$ を求めよ。
(2)不等式$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)+g(x)\right\}^2dx$≧$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)\right\}^2dx$ が成り立つことを示せ。
(3)曲線$y$=|$f(x)$+$g(x)$|、2直線$x$=$-\pi$, $x$=$\pi$、および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積をVとする。このとき不等式
V≧$\displaystyle\frac{2}{3}r^2$$(r^2-6)$
が成り立つことを示せ。さらに、等号が成立するときのa, bを求めよ。
2023筑波大学理系過去問
この動画を見る
$\Large\boxed{4}$ a, bを実数とし、$f(x)$=$x$+$a\sin x$, $g(x)$=$b\cos x$とする。
(1)定積分$\displaystyle\int_{-\pi}^{\pi}$$f(x)g(x)dx$ を求めよ。
(2)不等式$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)+g(x)\right\}^2dx$≧$\displaystyle\int_{-\pi}^{\pi}$$\left\{f(x)\right\}^2dx$ が成り立つことを示せ。
(3)曲線$y$=|$f(x)$+$g(x)$|、2直線$x$=$-\pi$, $x$=$\pi$、および$x$軸で囲まれた図形を$x$軸の周りに1回転させてできる回転体の体積をVとする。このとき不等式
V≧$\displaystyle\frac{2}{3}r^2$$(r^2-6)$
が成り立つことを示せ。さらに、等号が成立するときのa, bを求めよ。
2023筑波大学理系過去問
大学入試問題#580「これは落としたくない」 東邦大学医学部(2017) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1-x}{1+x^3} dx$
出典:2017年東邦大学医学部 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{1-x}{1+x^3} dx$
出典:2017年東邦大学医学部 入試問題
大学入試問題#578「定数aにかまっていられない」 京都帝国大学(1939) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3a} \displaystyle \frac{2x}{(x^2-a^2)^{\frac{2}{3}}} dx$
出典:1939年京都帝国大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{3a} \displaystyle \frac{2x}{(x^2-a^2)^{\frac{2}{3}}} dx$
出典:1939年京都帝国大学 入試問題
東邦大学医学部医学科(2015) #Shorts #King_property #キングプロパティ

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師:
ますただ
問題文全文(内容文):
$I=\displaystyle \int_{-2}^{2} \displaystyle \frac{x^22^{-x}}{2^x+2^{-x}} dx$
出典:2015年東邦大学医学部医学科
この動画を見る
$I=\displaystyle \int_{-2}^{2} \displaystyle \frac{x^22^{-x}}{2^x+2^{-x}} dx$
出典:2015年東邦大学医学部医学科
大学入試問題#575「こんな感じかな?で解けるはず」 大阪教育大学(2014) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪教育大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}} e^{3x}\sin^2\ x\ \sin(x+\displaystyle \frac{\pi}{4})\ dx$
出典:2014年大阪教育大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{6}} e^{3x}\sin^2\ x\ \sin(x+\displaystyle \frac{\pi}{4})\ dx$
出典:2014年大阪教育大学 入試問題
福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 媒介変数表示
$x$=$\sin t$, $y$=$\cos(t-\frac{\pi}{6})\sin t$ (0≦$t$≦$\pi$)
で表される曲線をCとする。以下の問いに答えよ。
(1)$\frac{dx}{dt}$=0 または $\frac{dy}{dt}$=0 となる$t$の値を求めよ。
(2)Cの概形を$xy$平面上に描け。
(3)Cの$y$≦0 の部分と$x$軸で囲まれた図形の面積を求めよ。
2023神戸大学理系過去問
この動画を見る
$\Large\boxed{5}$ 媒介変数表示
$x$=$\sin t$, $y$=$\cos(t-\frac{\pi}{6})\sin t$ (0≦$t$≦$\pi$)
で表される曲線をCとする。以下の問いに答えよ。
(1)$\frac{dx}{dt}$=0 または $\frac{dy}{dt}$=0 となる$t$の値を求めよ。
(2)Cの概形を$xy$平面上に描け。
(3)Cの$y$≦0 の部分と$x$軸で囲まれた図形の面積を求めよ。
2023神戸大学理系過去問
大学入試問題#568「素直に正面突破」 東京帝国大学(1968) #広義積分

単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{ \infty } \displaystyle \frac{xe^{-x}}{(1+e^{-x})^2}\ dx$
出典:1938年東京帝国大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{ \infty } \displaystyle \frac{xe^{-x}}{(1+e^{-x})^2}\ dx$
出典:1938年東京帝国大学 入試問題
大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$n$:正の整数
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ
出典:1937年東京帝国大学 入試問題
この動画を見る
$n$:正の整数
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ
出典:1937年東京帝国大学 入試問題
大学入試問題#561「不定積分だと難易度爆上げ」 東京帝国大学(1930) #不定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x\sqrt{ 1-x^2 }}$
出典:1930年東京帝国大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{dx}{x\sqrt{ 1-x^2 }}$
出典:1930年東京帝国大学 入試問題
大学入試問題#559「解法色々」 筑波大学(2020) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^2x\ \cos2x\ dx$
出典:2020年筑波大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^2x\ \cos2x\ dx$
出典:2020年筑波大学 入試問題
大学入試問題#557「類題多数」 関西大学(2011) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{e^x+2e^{-x}+3}$
出典:2011年関西大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{e^x+2e^{-x}+3}$
出典:2011年関西大学 入試問題
大学入試問題#556「技はかかりそうだけど、正面突破」 東京帝国大学大正14年 #定積分

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x+\sin\ x}{1+\cos\ x} dx$
出典:大正14年東京大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{x+\sin\ x}{1+\cos\ x} dx$
出典:大正14年東京大学 入試問題
大学入試問題#554「受験生の心を折にきてる。」 東邦大学医学部(2013) #定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2+1}{x^4+1} dx$
出典:2013年東邦大学医学部 入試問題
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2+1}{x^4+1} dx$
出典:2013年東邦大学医学部 入試問題
