定積分 - 質問解決D.B.(データベース) - Page 11

定積分

大学入試問題#525「これは根性だすだけか!?」 福島県立医科大学(2017) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{1+\sqrt{ 3 }} \displaystyle \frac{x^3}{x^2-2x+2} dx$

出典:2017年福島県立医科大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第3問〜接線が作る三角形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の曲線y=$\frac{1}{x^2}$ (x $\ne$ 0)をCとする。$a_1$を正の実数とし、点$A_1$$\left(a_1, \frac{1}{a_1^2}\right)$におけるCの接線を$l_1$とする。$l_1$とCの交点で$A_1$と異なるものを$A_2$$\left(a_2, \frac{1}{a_2^2}\right)$とする。次に点$A_2$におけるCの接線を$l_2$とCの交点で$A_2$と異なるものを$A_3$$\left(a_3, \frac{1}{a_3^2}\right)$とする。以下、同様にしてn=3,4,5,...に対して、$A_n$$\left(a_n, \frac{1}{a_n^2}\right)$におけるCの接線を$l_n$とし、$l_n$とCの交点で$A_n$と異なるものを$A_{n+1}$$\left(a_{n+1}, \frac{1}{a_{n+1}^2}\right)$とする。
(1)$\frac{a_2}{a_1}$=$\boxed{\ \ あ\ \ }$であり、$\frac{a_3}{a_1}$=$\boxed{\ \ い\ \ }$である。
(2)$a_n$を$a_1$で表すと$a_n$=$\boxed{\ \ う\ \ }$である。無限級数$\displaystyle\sum_{n=1}^{\infty}a_n$の和をTを$a_1$を用いて表すとT=$\boxed{\ \ え\ \ }$である。
(3)$a_1$を正の実数すべてにわたって動かすとき、三角形$A_1A_2A_3$の重心が描く軌跡の方程式をy=f(x)の形で求めるとf(x)=$\boxed{\ \ お\ \ }$となる。
(4)三角形$A_1A_2A_3$が鋭角三角形になるための条件は$\boxed{\ \ か\ \ }$<$a_1$<$\boxed{\ \ き\ \ }$である。
(5)x軸上に2点$A'_1$($a_1$, 0), $A'_2$($a_2$, 0)をとり、台形$A_1A_2A'_2A'_1$の面積を$S_1$とする。また、点$A_1$から点$A_3$にいたる曲線Cの部分、および線分$A_3A_2$と$A_2A_1$で囲まれた図形の面積を$S_2$とする。このとき、$S_1$:$S_2$=$\boxed{\ \ く\ \ }$:$\boxed{\ \ け\ \ }$である。ただし、$\boxed{\ \ く\ \ }$と$\boxed{\ \ け\ \ }$は互いに素な自然数である。

2023慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#524「何も考えず式変形」 福島県立医科大学(2018) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (log\ x-x)^2 dx$

出典:2018年福島県立医科大学 入試問題
この動画を見る 

大学入試問題#523「落とせない積分」 信州大学(2001) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2+2}{x+2} dx$

出典:2001年信州大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(3)〜曲線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)曲線y=$x$$\log(x^2+1)$のx≧0の部分をCとすると、点(1, log2)におけるCの接線lの方程式はy=$\boxed{\ \ く\ \ }$である。
また、曲線Cと直線l、およびy軸で囲まれた図形の面積は$\boxed{\ \ け\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#521「部分積分もあるかもしれない」 信州大学(2004) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} (x+2)\sqrt{ 4-x^2 }\ dx$

出典:2004年信州大学 入試問題
この動画を見る 

大学入試問題#519「一目はKing_property」 By にっし~Dairyさん #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{e^x(1+2\tan\ x)}{\cos^2\ x} dx$
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第3問〜逆関数とで囲まれる面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数xに対して関数f(x)をf(x)=$e^{x-2}$で定め、正の実数xに対して関数g(x)をg(x)=$\log x$+2で定める。またy=f(x), y=g(x)のグラフをそれぞれ$C_1$,$C_2$とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xと$C_1$が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xと$C_1$との2つの交点のx座標を$\alpha$, $\beta$とする。ただし$\alpha$<$\beta$とする。
直線y=xと$C_1$,$C_2$をすべて同じxy平面上に図示せよ。
(4)$C_1$と$C_2$で囲まれる図形の面積を(3)の$\alpha$と$\beta$の多項式で表せ。

2023早稲田大学理工学部過去問
この動画を見る 

大学入試問題#516「ちょっとした公式で一撃!」 高知工科大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \displaystyle \frac{dx}{\tan^2x\ \cos^2x}$

出典:2022年高知工科大学 入試問題
この動画を見る 

大学入試問題#515「この問題は結構有名?」 名古屋大学(2005) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x\ \sin^3x}{4-\cos^2x} dx$

出典:2005年名古屋大学 入試問題
この動画を見る 

大学入試問題#513「このチャンネルでは初めての発想!!」 By Nissydarts さん #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$I=\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{dx}{1-6\sin^2x+12\sin^4x-8\sin^6x}$
この動画を見る 

大学入試問題#512「受験生の心は折れる」 浜松医科大学(2015) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{(3n^2+1^2)(3n^2+2^2)・・・(3n^2+n^2)}{(n^2+1^2)(n^2+2^2)・・・(n^2+n^2)})^{\frac{1}{n}}$

出典:2015年浜松医科大学 入試問題
この動画を見る 

大学入試問題#507「油断してると沼にはまりがち:良問」 長崎大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\tan\ x}{2-\cos\ 2x} dx$

出典:2015年長崎大学 入試問題
この動画を見る 

大学入試問題#506「どこから引っかけるか」By英語orドイツ語さん #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^2}{e^{2x(1-x)}}dx$
この動画を見る 

大学入試問題#504「ひたすら積分」 #京都工芸繊維大学 (2012) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \frac{\displaystyle \int_{1}^{e} log(ax) dx}{\displaystyle \int_{1}^{e} x\ dx}=\displaystyle \int_{1}^{e}\displaystyle \frac{ log(ax)}{x} dx$を満たすとき
$log\ a$の値を求めよ。

出典:2012年京都工芸繊維大学 入試問題
この動画を見る 

大学入試問題#502「誘導ありで私立の医学部」 私立医学部医学科系 #定積分 by 英語orドイツ語さん

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\pi-2}^{\pi(\pi+1)} \displaystyle \frac{dx}{x^2+\pi^2}$
この動画を見る 

大学入試問題#501「積分区間を2π→0にせんでも・・・・」 産業医科大学(2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2\pi}^{0} |3\cos\ x-\sqrt{ 3 }\ \sin\ x|\ dx$

出典:2016年産業医科大学 入試問題
この動画を見る 

大学入試問題#500「基本に沿って」 電気通信大学後期(2022) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{n^2k+n^3}{k^4+2n^2k^2+n^4}$

出典:2022年電気通信大学後期 入試問題
この動画を見る 

大学入試問題#499「見た目以上に計算量が多い」 信州大学後期(2015) #広義積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ s \to +0 } \displaystyle \int_{s}^{\frac{\pi}{2}} (\displaystyle \frac{1}{\sin\ x}-\displaystyle \frac{1}{x}) dx$

出典:2015年信州大学後期 入試問題
この動画を見る 

大学入試問題#497「まあ、これがベターなのかな」  産業医科大学 改 (2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\sqrt{ 2 }}^{\sqrt{ 3 }} x\ log(x^2-1)\ dx$

出典:2016年産業医科大学 入試問題
この動画を見る 

大学入試問題#496「よくある問題」  産業医科大学 改 (2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{3} (x-1)(x-2)^{\frac{1}{3}} dx$

出典:2016年産業医科大学 入試問題
この動画を見る 

大学入試問題#495「知ってる形に」  産業医科大学(2016) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{0} \displaystyle \frac{x^2+x-1}{x^2+x+1} dx$

出典:2016年産業医科大学 入試問題
この動画を見る 

大学入試問題#492「置換方法はいろいろ」 信州大学後期(2018) #広義積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{2}^{n} \displaystyle \frac{dx}{\sqrt{ x^5+x^2 }}$

出典:2018年信州大学後期 入試問題
この動画を見る 

大学入試問題#488「もはや盤上この一手」 横浜市立大学医学部(2022) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \displaystyle \frac{t\ \sin\ t}{1+\pi^{\sin^3t}}dt$

出典:2022年横浜市立大学 入試問題
この動画を見る 

【数Ⅲ】区分求積法【グラフの面積とはなにか。和が積分になる驚きの仕組み】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \left(\dfrac{k^2}{n^3}+\dfrac{3k}{n^2}+\dfrac{1}{n} \right)$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=1}^n \dfrac{1}{2k+n}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=n+1}^{3n}\dfrac{1}{\sqrt{kn}}$を求めよ.
この動画を見る 

大学入試問題#487「みるからに微分」 電気通信大学(2022) #定積分 #極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#関数の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 4 } \displaystyle \frac{1}{x-4}\displaystyle \int_{2}^{\sqrt{ x }} log(1+t^2)dt$

出典:2022年電気通信大学 入試問題
この動画を見る 

大学入試問題#486「なんか見たことある形」 埼玉医科大学(2023) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} log(\displaystyle \frac{\cos\ x}{\sin\ x}+1) dx$

出典:2023年埼玉医科大学 入試問題
この動画を見る 

大学入試問題#484「なんか不思議な積分」 明治大学2022 #定積分 #極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ h \to \infty } \displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h} log(|\sin\ t|^{\frac{1}{h}})dt$

出典:2022年明治大学 入試問題
この動画を見る 

大学入試問題#482「解法は沢山ありそうですが・・・」 信州大学(2007) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{4+x-x^2}{\sqrt{ 4-x^2 }} dx$

出典:2007年信州大学 入試問題
この動画を見る 

大学入試問題#481「個人的には複雑な7手詰め【5分で2段】」 明治大学(2022) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos\theta}{(1+\cos\theta)^2} d\theta$

出典:2022年明治大学 入試問題
この動画を見る 
PAGE TOP