数学(高校生) - 質問解決D.B.(データベース) - Page 47

数学(高校生)

福田の数学〜上智大学2024TEAP利用型理系第4問〜漸化式と証明

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式 $(\mathrm{A})$ を満たす数列 $\{ a_n\}$ を考える。
$(\mathrm{A}):$$a_{n+2}=na_{n+1}-a_n$$ \quad (n=1.2.3.\cdots)$
(1) $(\mathrm{A})$ を満たす数列を $1$つあげよ。
(2) $2$ つの数列 $\{ a_n\}$ と $\{ b_n\}$ が $(\mathrm{A})$ を満たすとする。どんな実数 $x,y$ に対しても数列 $\{ xa_n + yb_n \}$ が $(\mathrm{A})$ を満たすことを証明せよ。
この動画を見る 

福田のおもしろ数学269〜三角形における三角関数の性質の証明その2

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\triangle \mathrm{ABC}$ において、$ \cos A \cos B \cos C \leqq $$\displaystyle \frac{1}{8} \cdots ①$ が成り立つことを証明して下さい。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第3問〜定積分で表された方程式

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1) $x \gt 0$ のとき、関数 $\displaystyle y = \frac{e^x}{x}$ の極値を求めて、そのグラフの概形をかけ。
(2) 次の等式を満たす正の定数 $a$ を求めよ。
\begin{eqnarray}
\int_a^{2a} \frac{e^x}{x} dx = \int_a^{2a} \frac{e^x}{x^2} dx
\end{eqnarray}
(3) 次の等式を満たす異なる正の整数 $m,n$ が存在しないことを証明せよ。
\begin{eqnarray}
\int_m^{n} \frac{e^x}{x} dx = \int_m^{n} \frac{e^x}{x^2} dx
\end{eqnarray}
この動画を見る 

福田のおもしろ数学268〜三角形における三角関数の性質の証明

アイキャッチ画像
単元: #数Ⅱ#三角関数
指導講師: 福田次郎
問題文全文(内容文):
$△ABC$において、$\cos A+\cos B+\cos C \leqq \frac{3}{2}$が成り立つことを証明して下さい。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第2問〜底面が長方形の四角錐の体積

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面$\alpha$上にある長方形$\rm ABCD$と、$\alpha$上にない点$\rm O$で定まる四角錐$\rm O$-$\rm ABCD$を
考える。$\overrightarrow{\rm OA}=\vec{a},\overrightarrow{\rm OB} =\vec{b},\overrightarrow{\rm OC} =\vec{c},\overrightarrow{\rm OD} =\vec{d},$ とするとき、
$|\vec{a}|=9, |\vec{b}|=7,|\vec{c}|=2\sqrt{11},\vec{a}\cdot \vec{b}= 33,\vec{b}\cdot\vec{c} = 34$
である。
(1)$\vec{d}$を$\vec{a},\vec{b},\vec{c}$で表すと$\vec{d}=\boxed{オ}\vec{a}+\boxed{カ}\vec{b}+\boxed{キ}\vec{c}$
(2) $\vec{a}\cdot \vec{c}=\boxed{ク}$
(3) $\rm O$から平面$\alpha$に垂線$\rm OH$を下ろすと$\overrightarrow{\rm OH}=\dfrac{\boxed{ケ}}{\boxed{コ}}\vec a+\dfrac{\boxed{サ}}{\boxed{シ}}\vec b+\dfrac{\boxed{ス}}{\boxed{セ}}\vec c$であり点$\rm H$は$\boxed{う}$ にある。
(4) 長方形$\rm ABCD$の面積は$\boxed{ソ}$である。
(5) 四角錐$\rm O$-$\rm ABCD$の体積は$\boxed{タ}$である。
この動画を見る 

福田のおもしろ数学267〜複雑な漸化式と特殊な数学的帰納法

アイキャッチ画像
単元: #数列#漸化式#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_0,a_1,a_2,\cdots$が$a_1=1,a_{m+n}=\dfrac12(a_{2m}+a_{2n})~~(m\geqq n)$で定義されている。$a_{2024}$を求めよ。($m,n$は負では無い整数)
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第1問(3)〜対数不等式を満たす最小の整数

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(i) $\log_{10} 2=0.301$とする。このとき、$\log_{10} 1.28=0.\boxed{ウ}$である。
(ii)$n$は$2$以上の整数とする。$n^{100}<1.28^n$となる最小の$n$について、$2^a \leqq n < 2^{a+1}$となる整数$a$は$\boxed{エ}$
この動画を見る 

連立方程式をあれで解こう

アイキャッチ画像
単元: #その他#その他#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ax+ay=3$
$ax^2+ay^2=7$
$ax^3+by^3=16$
$ax^4+by^4=42$
のとき、
$ax^5+by^5$の値を求めよ
この動画を見る 

福田のおもしろ数学266〜直交する3つの円柱の共通部分の体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x$軸、$y$軸、$z$軸を軸とする半径$1$の円柱$T_1,T_2,T_3$の共通部分の体積を求めて下さい。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第1問(2)〜複素数の極形式とド・モアブルの定理

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$
\begin{eqnarray}
\fcolorbox{#000}{ #fff }{1}(2)\
複素数(\sqrt{2}+\sqrt{6}i)^{2024}を極形式で表したときの絶対値をr、偏角をθとする。ただし、0\leqqθ<2π\
このとき、\dfrac{log_2r}{2024}=\fcolorbox{#000}{ #fff }{$あ \ \ \ $}、θ=\fcolorbox{#000}{ #fff }{$い \ \ \ $}πである。
\end{eqnarray}
$
この動画を見る 

福田のおもしろ数学265〜直交する2つの円柱の共通部分の体積

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
x軸、y軸を軸とする半径1の円柱T_1 , \ T_2の共通部分の体積を求めよ。$(図は動画参照)
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第1問(1)〜不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)77x+52y=1$を満たす整数$x$、$y$の組のうち、$x$が正で最小の組は$(x,y)=(\boxed{ア},\boxed{イ})$である。
この動画を見る 

福田のおもしろ数学264〜なぜ球の表面積は4πr^3なのかの証明

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
半径$r$の球の体積が$\frac{4πr^3}{3}$あることを既知として、表面積が$4πr^2$であることを証明して下さい。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(4)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}(4)$座標平面上で放物線$y=x^2$上の点P$(t,t^2)(0 \leqq t \leqq 1)$における接線$y=-(x+1)^2$の二つの共有点の中点をQとする。ただし、共有点が1つの場合は、その共有点をQとする。Qの座標は$(\boxed{ユ}t+\boxed{ヨ}
,\boxed{ラ}t^2+\boxed{リ}t+\boxed{ル})$である。
tが$0 \leqq t \leqq1$の範囲を動くとき線分PQが動いてできる図形の面積は$\frac{\boxed{レ}}{\boxed{ロ}}$である
この動画を見る 

福田のおもしろ数学263〜複素数平面上の3点が正三角形をなす必要十分条件

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の$3$点$α,β,γ$が正三角形になるための必要十分条件は$α^2+β^2+γ^2=αβ+βγ+γα$であることを証明して下さい。
この動画を見る 

2024年度第2回記述模試高3数学解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
問題文全文(内容文):
大問1
(1) 袋の中に5枚のコインが入っており、そのうち2枚には両面にAが書かれており、残り3枚には片面にA、もう一方の面にBが書かれている。
(ⅰ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になる確率を求めよ。
(ⅱ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になった。このとき、下の面にもAが書かれている確率を求めよ。
(2) 多項式$(x-1)^{99}$を$x^2$で割った時の余りを求めよ。また、整数$99^{99}$を10000で割った時の余りを求めよ。
(3) $12^{12}$の桁数を求めよ。
(4)$\displaystyle z=\frac{-\sqrt{3}+i}{1+i}$とする。
(ⅰ)zを極形式で表せ。
(ⅱ)nを正の整数とする。$z^n$が実数となるような最小のnを求めよ。

大問2
 数列${a_n}$の初項$a_1$から第n項$a_n$までの和を$S_n$、数列${b_n}$の初項$b_1$から第n項$b_n$までの和を$T_n$をとするとき
$a_1=2、b_1=0、a_{n+1}=2T_n+2、b_{n+1}=2S_n$ が成り立つ。
(1) $a_2、b_2$を求めよ
(2) $a_{n+1}、b_{n+1}$を$a_n、b_n$を用いて表せ。
(3) 一般項$a_n$を求めよ。

大問3
 aは実数の定数とし、関数f(x)を
$f(x)=e^{-x}(a-sinx-cosx) (0<x<2π)$により定める。
(1)f(x)が極値を持つとき、aの値の範囲を求めよ。
(2)f(x)が極値を2つ持つときを考える。極値の積が負となるとき、aの値の範囲を求めよ。また、極値の積が$\displaystyle \frac{-e^{-3π}}{2}$となるときのaの値を全て求めよ。

大問4
AB=1、AC=3、BC=$2\sqrt{3}$である三角形ABCがある。$\overrightarrow{AB}=\vec{b}、\overrightarrow{AC}=\vec{c}$とする。
(1) 内積$\vec{b}・\vec{c}$の値を求めよ。
(2) s,tを実数とし、$\overrightarrow{AP}=s\vec{b}+t\vec{c}$とする。AB⊥BP、AC⊥CPであるとき、s,tの値を求め、さらに|$\overrightarrow{AP}$|を求めよ。
(3)点Qが三角形ABCの外接円上を動くとき、三角形BCQの面積を最大にするQを$Q_0$とする。$\overrightarrow{AQ_0}$を$\vec{b},\vec{c}$を用いて表せ。

大問5
 $0≦x<π$において定義された関数
$f(x)=\displaystyle \frac{2sinx}{1+cosx}、g(x)=\frac{\sqrt{3}}{1+cosx}$ 
があり、曲線y=f(x)を$C_1$、曲線y=g(x)を$C_2$とする。
(1) $C_1、C_2$の共有点のx座標を求めよ
(2)(ⅰ)不定積分$\int f(x)dx$を求めよ
(ⅱ)$tan\frac{2}{x}$の導関数をcosxを用いて表せ
(3)$C_1、C_2$およびy軸の3つで囲まれる部分の面積を$S_1$とし、$C_1$と$C_2$で囲まれる部分の面積を$S_2$とする。$S_1$と$S_2$の大小を比較せよ。ただし、自然対数の底eについて、2.7<e<2.8であることは用いてよい。

大問6
正の整数Nを3で割った時の余りは2である。
(1)正の整数a,bを3で割った時の余りをそれぞれ$r_a、r_b$とする。ab=Nが成り立つとき、$r_a、r_b$の組をすべて求めよ。
(2)Nの正の約数の総和を3で割った時の余りを求めよ。
(3)Nの正の約数の逆数の総和を$\displaystyle \frac{q}{p}$(ただし、pとqはともに正の整数で最大公約数は1である)と表したとき、qは3の倍数であることを示せ。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(3)〜直線の回転

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}(3)$座標平面において、直線$y=2x-3$を、原点を中心に反時計回りに45°回転して得られる直線は$y=\boxed{メ}x+\boxed{モ}\sqrt{\boxed{ヤ}}$である。
この動画を見る 

福田のおもしろ数学262〜アルキメデスの螺旋の長さ

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
極方程式$r=θ(0 \leqq θ \leqqπ)$が表す曲線の長さを求めて下さい。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(2)〜角の二等分線の長さを求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}(2)AB=4,BC=2\sqrt{6},CA=2\sqrt{3}-2$の$\triangle ABC$がある。$\angle A$の二等分線と辺BCの交点をDとする。このとき、$\triangle ABC$の面積は$\boxed{フ}+\boxed{ヘ}\sqrt{\boxed{ホ}}$であり、$AD=\boxed{マ}+\boxed{ミ}\sqrt{\boxed{ム}}$である。
この動画を見る 

福田のおもしろ数学261〜整数解を求めるにはどうすればよいか

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,n$を正の整数とするとき$a^{n+1}-(a+1)^n=2000$を満たす$a,n$を求めて下さい。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(1)〜対数指数不等式と領域に含まれる格子点の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}(1)$整数の組$(x,y)$で条件\begin{eqnarray}
\left\{
\begin{array}{l}
\log_{ \frac{π}{4} } y \lt log_{\frac{1}{2}}(x-1) \\
2^{y-1} \lt 8^x
\end{array}
\right.
\end{eqnarray}
を満たすものは全部で$\boxed{ヒ}$個ある。
この動画を見る 

これなにしてる?

アイキャッチ画像
単元: #平面上の曲線#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
楕円のお話
この動画を見る 

2進法のかけ算

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
11_(2)\times 11_(2)
この動画を見る 

福田のおもしろ数学260〜関数方程式を満たす関数を探せ

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
微分可能な関数 $f(x)$ はすべての実数 $x,y$ に対し
$f(x^2-y^2)$$=xf(x)-yf(y)$ $\cdots$ ① を満たす。このような $f(x)$ をすべて求めて下さい。
この動画を見る 

割って余る問題 国学院高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
101と227をnで割ったときの余りが17になる自然数nのうち、最大のものを求めよ
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第2問〜2点の移動に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
表と裏が出る確率がそれぞれ $\frac{1}{2}$ である硬貨がある。座標平面において、原点 $(0,0)$ に置かれた点 $\mathrm{A}$ および座標 $(1,0)$ に置かれた点 $\mathrm{B}$ を、硬貨を $1$ 回投げるごとに以下の規則 $(R)$ に従って動かし、 $n$ 回硬貨を投げた直後における点 $\mathrm{A,B}$ の位置について考える。
規則 $(R)$:
・表が出たとき、 $\mathrm{A}$ は動かさず、 $\mathrm{B}$ は $\mathrm{A}$ を中心に反時計回りに $90^{\circ}$ 回転した位置に動かす。
・裏が出たとき、$\mathrm{B}$ は動かさず、 $\mathrm{A}$ は $\mathrm{B}$ を中心に反時計回りに $90^{\circ}$ 回転した位置に動かす。
$(1)$ $n=10$ のとき、$\overrightarrow{\mathrm{AB}}=(\fbox{タ},\fbox{チ})$
$(2)$ $n=3$ のとき、 $\mathrm{A}$ が位置することが可能な座標の総数は $\fbox{ツ}$ である。
$(3)$ $n=4$ のとき、 $\mathrm{A}$ が原点にある確率は $\displaystyle \frac{\fbox{テ}}{\fbox{ト}}$ であり、 $\mathrm{A}$ が $x$ 軸上にある確率は $\displaystyle \frac{\fbox{ナ}}{\fbox{ニ}}$ である。
$(4)$ $n=8$ のとき、 $\mathrm{A}$ が原点にある確率は $\displaystyle \frac{\fbox{ヌ}}{\fbox{ネ}}$ であり、 $\mathrm{A}$ が $x$ 軸上にある確率は $\displaystyle \frac{\fbox{ノ}}{\fbox{ハ}}$ である。
この動画を見る 

#同志社大学2021#定積分_62

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (2x-1)\log x \ dx$を解け.

2021同志社大学過去問題
この動画を見る 

男女比率どうなる?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある国では人々は生まれてくる子には男の子だけを欲しがりました。そのため、どの家庭も男の子を生むまで子供を作り続けました。この国では男の子と女の子の人口比率はどうなりますか?
この動画を見る 

#福岡大学医学部2018#極限_61

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#福岡大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty} \sqrt x \left(\sqrt{1+x}-\sqrt x \right)$を解け.

2018福岡大学医学部過去問題
この動画を見る 

福田のおもしろ数学259〜複雑な無理不等式の解

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \frac{4x^2}{(1-\sqrt{2x+1})^2} \lt 2x+9$ を解け。
この動画を見る 
PAGE TOP