福田次郎 - 質問解決D.B.(データベース) - Page 2

福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

静岡県の公立高校の数学教員として長年受験指導あり。
藤枝東高校8年、静岡市立高校8年、静岡高校12年。特に静岡高校では9年間にわたり進路指導主任として大学側とも関係を構築。
その経験を活かして数学の動画を日々配信中!
数学関係のアプリも多数手がけています。
過去問を中心に受験対策数学動画多数。

福田のおもしろ数学170〜タンジェントに関する複雑な三角方程式

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\tan x$=$\tan(x+10°)\tan(x+20°)\tan(x+30°)$ を満たす$x$を全て求めなさい。
この動画を見る 

福田の数学〜九州大学2024年文系第2問〜ベクトルの内積計算と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上の原点O(0,0)、点A(2,1)を考える。点Bは第1象限にあり、|$\overrightarrow{OB}$|=$\sqrt{10}$, $\overrightarrow{OA}\bot\overrightarrow{AB}$を満たすとする。以下の問いに答えよ。
(1)点Bの座標を求めよ。
(2)$s$,$t$を正の実数とし、$\overrightarrow{OC}$=$s\overrightarrow{OA}$+$t\overrightarrow{OB}$ を満たす点Cを考える。三角形OACと三角形OBCの面積が等しく、|$\overrightarrow{OC}$|=4 が成り立つとき、$s$,$t$の値を求めよ。
この動画を見る 

福田のおもしろ数学169〜log x/xの極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}$=0 を証明せよ。
この動画を見る 

福田の数学〜九州大学2024年文系第1問〜2つの放物線と共通接線で囲まれる図形の面積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 2つの放物線
$C_1:y=2x^2$, $C_2:y=2x^2-8x+16$
の両方に接する直線を$l$とする。以下の問いに答えよ。
(1)直線$l$の方程式を求めよ。
(2)2つの放物線$C_1$, $C_2$と直線$l$で囲まれた図形の面積を求めよ。
この動画を見る 

福田のおもしろ数学168〜2の100!乗と2の100乗の階乗の大小

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2^{100!}$と$(2^{100})!$ の大小を比較してせよ。
この動画を見る 

福田の数学〜九州大学2024年理系第5問〜定積分で定義された数列の極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数$m$, $n$に対して
$I(m,n)$=$\displaystyle\int_1^ex^me^x(\log x)^ndx$
とする。以下の問いに答えよ。
(1)$I(m+1,n+1)$を$I(m,n+1)$, $I(m,n)$, $m$, $n$を用いて表せ。
(2)すべての自然数$m$に対して、$\displaystyle\lim_{n \to \infty}I(m,n)$=0 が成り立つことを示せ。
この動画を見る 

福田のおもしろ数学167〜長方形の残りの部分の面積

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算
指導講師: 福田次郎
問題文全文(内容文):
緑色の長方形の面積を求めよ。(※動画参照)
この動画を見る 

福田の数学〜九州大学2024年理系第4問〜3個以上の格子点を通る直線の個数

アイキャッチ画像
単元: #数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を3以上の整数とする。座標平面上の点のうち、$x$座標と$y$座標がともに1以上$n$以下の整数であるものを考える。これら$n^2$個の点のうち3点以上を通る直線の個数を$L(n)$とする。以下の問いに答えよ。
(1)$L(3)$を求めよ。
(2)$L(4)$を求めよ。
(3)$L(5)$を求めよ。
この動画を見る 

福田のおもしろ数学166〜素数pのn乗の階乗はpで何回割り切れるか

アイキャッチ画像
単元: #数A#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$p$を素数とするとき、$(p^n)!$は$p$で何回割り切れるか。
この動画を見る 

福田の数学〜九州大学2024年理系第3問〜階乗を含む不定方程式の解

アイキャッチ画像
単元: #数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。
(1)自然数$a$, $b$が$a$<$b$を満たすとき、$\displaystyle\frac{b!}{a!}$≧$b$ が成り立つことを示せ。
(2)2・$a!$=$b!$ を満たす自然数の組($a$, $b$)を全て求めよ。
(3)$a!$+$b!$=2・$c!$ を満たす自然数の組($a$, $b$, $c$)を全て求めよ。
この動画を見る 

福田のおもしろ数学165〜4次方程式を工夫して解こう

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(x+2)^4$+$(x+1)^4$=17 を解け。
この動画を見る 

福田の数学〜九州大学2024年理系第2問〜複素数平面と高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 整式$f(z)$=$z^6$+$z^4$+$z^2$+1
について、以下の問いに答えよ。
(1)$f(z)$=0 を満たす全ての複素数$z$に対して、|$z$|=1 が成り立つことを示せ。
(2)次の条件を満たす複素数$w$を全て求めよ。
条件:$f(z)$=0 を満たす全ての複素数$z$に対して
$f(wz)$=0 が成り立つ。
この動画を見る 

福田のおもしろ数学164〜階乗とn乗の商の極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\lim_{n \to \infty}\frac{n!}{3^n}$と$\displaystyle\lim_{n \to \infty}\frac{n!}{n^n}$ を求めなさい。
この動画を見る 

福田の数学〜九州大学2024年理系第1問〜空間における三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$を実数とし、座標空間内の3点P(-1,1,-1), Q(1,1,1), R($a$, $a^2$, $a^3$)を考える。以下の問いに答えよ。
(1)$a$≠-1, $a$≠1 のとき、3点P,Q,Rは一直線上にないことを示せ。
(2)$a$が-1<$a$<1 の範囲を動くとき、三角形PQRの面積の最大値を求めよ。
この動画を見る 

福田のおもしろ数学163〜連続する奇数が互いに素である証明

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$が自然数であるとき、$2n-1$と$2n+1$が互いに素であることを示してください。
この動画を見る 

福田の数学〜神戸大学2024年文系第2問〜さいころの目と約数に関する確率

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$で最小のものを求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$で最小のものを求めよ。
(3)1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ。
この動画を見る 

福田のおもしろ数学162〜式の値の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$z$+$\displaystyle\frac{1}{z}$=1 のとき、$z^{2024}$+$\displaystyle\frac{1}{z^{2024}}$ の値を求めてください。
この動画を見る 

福田の数学〜神戸大学2024年文系第1問〜3次関数で定義された数列

アイキャッチ画像
単元: #数列#漸化式#神戸大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-10$x$ ($x$≧0)
が最小値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$\displaystyle\frac{1}{3}x^3$-100$a_nx$ ($x$≧0)
が最小値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_{10}a_n$ で定める。以下の問いに答えよ。
(1)$a_1$と$b_1$を求めよ。 (2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$b_{n+1}$を$b_n$を用いて表せ。
(4)数列$\left\{b_n\right\}$の一般項を求めよ。
(5)$\displaystyle\frac{a_1a_2a_3}{100}$ の値を求めよ。
この動画を見る 

福田のおもしろ数学161〜複雑な指数方程式の解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
方程式$(4+\sqrt{15})^x-2(4-\sqrt{15})^x$=1 を解け。
この動画を見る 

福田の数学〜神戸大学2024年理系第5問〜定積分で表された関数と不等式

アイキャッチ画像
単元: #積分とその応用#定積分#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 0以上の実数$x$に対して、
$f(x)$=$\displaystyle\frac{1}{2}\int_{-x}^x\frac{1}{1+u^2}du$
と定める。以下の問いに答えよ。
(1)0≦$\alpha$<$\displaystyle\frac{\pi}{2}$ を満たす実数$\alpha$に対して、$f(\tan\alpha)$を求めよ。
(2)$xy$平面上で、次の連立不等式の表す領域を図示せよ。
0≦$x$≦1, 0≦$y$≦1, $f(x)$+$f(y)$≦$f(1)$
またその領域の面積を求めよ。
この動画を見る 

福田のおもしろ数学160〜星のカピイは能力を何個持てるか

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
星のカピイは敵の能力をコピーできます。2つの能力を組み合わせて別の能力にすることもできます。(同じ能力を組み合わせることも可能)能力は全部で12種類あります。さてカピイは何個の能力を使うことができるでしょう。
この動画を見る 

福田の数学〜神戸大学2024年理系第4問〜回転体の体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 1辺の長さが$\sqrt 2$の正方形ABCDを底面にもち、高さが1である直方体ABCD-EFGHを、頂点の座標がそれぞれ
A(1,0,0), B(0,1,0), C(-1,0,0), D(0,-1,0),
E(1,0,1), F(0,1,1), G(-1,0,1), H(0,-1,1)
になるように$xyz$空間におく。以下の問いに答えよ。
(1)直方体ABCD-EFGHを直線AEのまわりに1回転してできる回転体を$X_1$とし、また直線ABのまわりに1回転してできる回転体を$X_2$とする。$X_1$の体積$V_1$と$X_2$の体積$V_2$を求めよ。
(2)0≦$t$≦1 とする。平面$x$=$t$と線分EFの共有点の座標を求めよ。
(3)直方体ABCD-EFGHを$x$軸のまわりに1回転してできる回転体を$X_3$とする。
$X_3$の体積$V_3$を求めよ。
この動画を見る 

福田のおもしろ数学159〜俳句はスパコンとAIで終了してしまうのか

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#場合の数#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
俳句はスパコンとAIに駆逐されるのか?
この動画を見る 

福田の数学〜神戸大学2024年理系第3問〜さいころの目と約数に関する確率

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $n$を自然数とする。以下の問いに答えよ。
(1)1個のサイコロを投げて出た目が必ず$n$の約数となるような$n$を小さい順に3つ求めよ。
(2)1個のサイコロを投げて出た目が$n$の約数となる確率が$\displaystyle\frac{5}{6}$であるような$n$を小さい順に3つ求めよ。
(3)1個のサイコロを3回投げて出た目の積が160の約数となる確率を求めよ。
この動画を見る 

福田のおもしろ数学158〜無理不等式と同値変形

アイキャッチ画像
単元: #関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
不等式$\sqrt{2x+1}$≧$x$-1 ...(*)を
(1)同値変形することで解け。 (2)グラフを利用して解け。
この動画を見る 

福田の数学〜神戸大学2024年理系第2問〜放物線と2接線た作る三角形の重心の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$, $b$, $c$は実数で、$a$≠0とする。放物線$C$と直線$l_1$, $l_2$をそれぞれ
$C$:$y$=$ax^2$+$bx$+$c$
$l_1$:$y$=$-3x$+3
$l_2$:$y$=$x$+3
で定める。$l_1$, $l_2$がともに$C$と接するとき、以下の問いに答えよ。
(1)$b$を求めよ。$c$を$a$を用いて表せ。
(2)$C$が$x$軸と異なる2点で交わるとき、$\displaystyle\frac{1}{a}$のとりうる値の範囲を求めよ。
(3)$C$と$l_1$の接点をP、$C$と$l_2$の接点をQ、放物線$C$の頂点をRとする。$a$が(2)の条件を満たしながら動くとき、$\triangle PQR$の重心Gの軌跡を求めよ。
この動画を見る 

福田のおもしろ数学157〜3変数の不定方程式の自然数解

アイキャッチ画像
単元: #数Ⅰ#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$7(x+y+z)$=$2(xy+yz+zx)$ を満たす自然数$x$, $y$, $z$($x$≦$y$≦$z$)を求めよ。
この動画を見る 

福田の数学〜神戸大学2024年理系第1問〜無理関数を利用して定義された数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $c$を正の実数とする。各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$x$+$\sqrt{c-x^2}$ (0≦$x$≦$\sqrt c$)
が最大値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$x$+$\sqrt{a_n-x^2}$ (0≦$x$≦$\sqrt{a_n}$)
が最大値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_2a_n$ で定める。以下の問いに答えよ。
(1)$a_1$を$c$を用いて表せ。
(2)$b_{n+1}$を$b_n$を用いて表せ。
(3)数列$\left\{b_n\right\}$の一般項を$n$と$c$を用いて表せ。
この動画を見る 

福田のおもしろ数学156〜ルートが整数となる条件と整数解

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$が整数の時、$\sqrt{n^2-8n+1}$ が整数となる最大の$n$を求めよ。
この動画を見る 

福田の数学〜大阪大学2024年文系第3問〜素数を小さい順に並べた数列の特徴

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#大阪大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 素数を小さい順に並べて得られる数列を
$p_1$, $p_2$, ..., $p_n$, ...
とする。
(1)$p_{15}$の値を求めよ。
(2)$n$≧12のとき、不等式$p_n$>$3n$が成り立つことを示せ。
この動画を見る 
PAGE TOP