学校別大学入試過去問解説(数学)
福田の数学〜名古屋大学2022年理系第3問〜複素数平面上の正六角形の頂点の位置
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 複素数平面上に、原点Oを頂点の1つとする正六角形OABCDEが与えられている。\\
ただしその頂点は時計の針の進む方向と逆向きにO,A,B,C,D,Eとする。\\
互いに異なる0でない複素数\alpha,\beta,\gammaが、\\
0 \leqq \arg(\frac{\beta}{\alpha}) \leqq \pi, 4\alpha^2-2\alpha\beta+\beta^2=0, 2\gamma^2-(3\alpha+\beta+2)\gamma+(\alpha+1)(\alpha+\beta)=0\\
を満たし、\alpha,\beta,\gammaのそれぞれが正六角形OABCDEの頂点のいずれかであるとする。\\
(1)\frac{\beta}{\alpha}を求め、\alpha,\betaがそれぞれどの頂点か答えよ。\\
(2)組(\alpha,\beta,\gamma)を全て求め、それぞれの組について正六角形OABCDEを\\
複素数平面上に図示せよ。
\end{eqnarray}
2022名古屋大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ 複素数平面上に、原点Oを頂点の1つとする正六角形OABCDEが与えられている。\\
ただしその頂点は時計の針の進む方向と逆向きにO,A,B,C,D,Eとする。\\
互いに異なる0でない複素数\alpha,\beta,\gammaが、\\
0 \leqq \arg(\frac{\beta}{\alpha}) \leqq \pi, 4\alpha^2-2\alpha\beta+\beta^2=0, 2\gamma^2-(3\alpha+\beta+2)\gamma+(\alpha+1)(\alpha+\beta)=0\\
を満たし、\alpha,\beta,\gammaのそれぞれが正六角形OABCDEの頂点のいずれかであるとする。\\
(1)\frac{\beta}{\alpha}を求め、\alpha,\betaがそれぞれどの頂点か答えよ。\\
(2)組(\alpha,\beta,\gamma)を全て求め、それぞれの組について正六角形OABCDEを\\
複素数平面上に図示せよ。
\end{eqnarray}
2022名古屋大学理系過去問
【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(2)
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
(1) $2x^2+y^2$の最小値
(2)$\log_{10}x+2\log_{10}y$の最大値
(3)$\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
この動画を見る
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
(1) $2x^2+y^2$の最小値
(2)$\log_{10}x+2\log_{10}y$の最大値
(3)$\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
福田の数学・入試問題解説〜東北大学2022年文系第4問〜空間における四面体の高さと体積
単元:
#数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#東北大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ xyz空間内の点O(0,0,0),A(1,\sqrt2,\sqrt3),B(-\sqrt3,0,1),C(\sqrt6,-\sqrt3,\sqrt2)\\
を頂点とする四面体OABCを考える。3点OABを含む平面からの距離が1の点\\
のうち、点Oに最も近く、x座標が正のものをHとする。\\
(1)Hの座標を求めよ。\\
(2)3点OABを含む平面と点Cの距離を求めよ。\\
(3)四面体OABCの体積を求めよ。
\end{eqnarray}
2022東北大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ xyz空間内の点O(0,0,0),A(1,\sqrt2,\sqrt3),B(-\sqrt3,0,1),C(\sqrt6,-\sqrt3,\sqrt2)\\
を頂点とする四面体OABCを考える。3点OABを含む平面からの距離が1の点\\
のうち、点Oに最も近く、x座標が正のものをHとする。\\
(1)Hの座標を求めよ。\\
(2)3点OABを含む平面と点Cの距離を求めよ。\\
(3)四面体OABCの体積を求めよ。
\end{eqnarray}
2022東北大学文系過去問
福田の数学〜名古屋大学2022年理系第2問〜互いに素になるような確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 1つのサイコロを3回投げる。1回目に出る目をa、2回目に出る目をb、\\
3回目に出る目をcとする。なおサイコロは1から6までの目が等しい確率で出るもの\\
とする。\\
(1)ab+2c \geqq abcとなる確率を求めよ。\\
(2)ab+2cと2abcが互いに素となる確率を求めよ。
\end{eqnarray}
2022名古屋大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 1つのサイコロを3回投げる。1回目に出る目をa、2回目に出る目をb、\\
3回目に出る目をcとする。なおサイコロは1から6までの目が等しい確率で出るもの\\
とする。\\
(1)ab+2c \geqq abcとなる確率を求めよ。\\
(2)ab+2cと2abcが互いに素となる確率を求めよ。
\end{eqnarray}
2022名古屋大学理系過去問
福田の数学〜東北大学2022年文系第3問〜領域における最大
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを正の実数とし、xy平面上の直線l:ax;by-2=0を考える。\\
(1)直線lと原点の距離が2以上であり、直線lと直線x=1の交点のy座標が\\
2以上であるような点(a,b)の取りうる範囲Dを求め、ab平面上に図示せよ。\\
(2)点(a,b)が(1)で求めた領域Dを動くとする。このとき、\\
3a+2bを最大にするa,bの値と3a+2bの最大値を求めよ。
\end{eqnarray}
2022東北大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを正の実数とし、xy平面上の直線l:ax;by-2=0を考える。\\
(1)直線lと原点の距離が2以上であり、直線lと直線x=1の交点のy座標が\\
2以上であるような点(a,b)の取りうる範囲Dを求め、ab平面上に図示せよ。\\
(2)点(a,b)が(1)で求めた領域Dを動くとする。このとき、\\
3a+2bを最大にするa,bの値と3a+2bの最大値を求めよ。
\end{eqnarray}
2022東北大学文系過去問
福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数
単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とする。 \\
(1)整式x^3を2次式(x-a)^2で割った時の余りを求めよ。 \ \ \\
(2)実数を係数とする2次式f(x)=x^2+\alpha x+\betaで整式x^3を割った時の余りが\\
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。
\end{eqnarray}
2022名古屋大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とする。 \\
(1)整式x^3を2次式(x-a)^2で割った時の余りを求めよ。 \ \ \\
(2)実数を係数とする2次式f(x)=x^2+\alpha x+\betaで整式x^3を割った時の余りが\\
3x+bとする。bの値に応じて、このようなf(x)が何個あるかを求めよ。
\end{eqnarray}
2022名古屋大学理系過去問
福田の数学・入試問題解説〜東北大学2022年文系第2問〜定積分で表された関数の最小値
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#不定積分・定積分#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 実数tの関数\hspace{210pt}\\
\\
F(t)=\int_0^1|x^2-t^2|dx\\
\\
について考える。\\
(1)0 \leqq t \leqq 1のとき、F(t)をtの整式として表せ。\\
(2)t \geqq 0 のとき、F(t)を最小にするtの値TとF(T)の値を求めよ。
\end{eqnarray}
2022東北大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 実数tの関数\hspace{210pt}\\
\\
F(t)=\int_0^1|x^2-t^2|dx\\
\\
について考える。\\
(1)0 \leqq t \leqq 1のとき、F(t)をtの整式として表せ。\\
(2)t \geqq 0 のとき、F(t)を最小にするtの値TとF(T)の値を求めよ。
\end{eqnarray}
2022東北大学文系過去問
福田の数学〜東京工業大学2022年理系第5問〜定積分と不等式と区分求積
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ aは0 \lt a \leqq \frac{\pi}{4}を満たす実数とし、f(x)=\frac{4}{3}\sin(\frac{\pi}{4}+ax)\cos(\frac{\pi}{4}-ax)\\
とする。このとき、次の問いに答えよ。\\
(1)次の等式(*)を満たすaがただ1つ存在することを示せ。\\
(*) \int_0^1f(x)dx=1\\
(2)0 \leqq b \lt c \leqq 1を満たす実数b,cについて、不等式\\
f(b)(c-b) \leqq \int_b^cf(x)dx \leqq f(c)(c-b)\\
が成り立つことを示せ。\\
(3)次の試行を考える。\\
[試行]\ n個の数1,2,\ldots\ldots,nを出目とする、あるルーレットをk回まわす。\\
この試行において、各i=1,2,\ldots\ldots,nについてiが出た回数をS_{n,k,i}とし、\\
\\
(**)\lim_{k \to \infty}\frac{S_{n,k,i}}{k}=\int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx\\
\\
が成り立つとする。このとき、(1)の等式(*)が成り立つことを示せ。\\
(4)(3)の[試行]において出た数の平均値をA_{n,k}とし、A_n=\lim_{k \to \infty}A_{n,k}とする。\\
(**)が成り立つとき、極限\lim_{n \to \infty}\frac{A_n}{n}をaを用いて表せ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}}\ aは0 \lt a \leqq \frac{\pi}{4}を満たす実数とし、f(x)=\frac{4}{3}\sin(\frac{\pi}{4}+ax)\cos(\frac{\pi}{4}-ax)\\
とする。このとき、次の問いに答えよ。\\
(1)次の等式(*)を満たすaがただ1つ存在することを示せ。\\
(*) \int_0^1f(x)dx=1\\
(2)0 \leqq b \lt c \leqq 1を満たす実数b,cについて、不等式\\
f(b)(c-b) \leqq \int_b^cf(x)dx \leqq f(c)(c-b)\\
が成り立つことを示せ。\\
(3)次の試行を考える。\\
[試行]\ n個の数1,2,\ldots\ldots,nを出目とする、あるルーレットをk回まわす。\\
この試行において、各i=1,2,\ldots\ldots,nについてiが出た回数をS_{n,k,i}とし、\\
\\
(**)\lim_{k \to \infty}\frac{S_{n,k,i}}{k}=\int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx\\
\\
が成り立つとする。このとき、(1)の等式(*)が成り立つことを示せ。\\
(4)(3)の[試行]において出た数の平均値をA_{n,k}とし、A_n=\lim_{k \to \infty}A_{n,k}とする。\\
(**)が成り立つとき、極限\lim_{n \to \infty}\frac{A_n}{n}をaを用いて表せ。
\end{eqnarray}
2022東京工業大学理系過去問
福田の入試問題解説〜北海道大学2022年文系第4問〜復元抽出と非復元抽出の確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 箱の中に1文字ずつ書かれたカードが10枚ある。そのうち5枚にはA、\\
3枚にはB、2枚にはCと書かれている。箱から1枚ずつ、3回カードを\\
取り出す試行を考える。\\
(1)カードを取り出すごとに箱に戻す場合、1回目と3回目に取り出したカード\\
の文字が一致する確率を求めよ。\\
(2)取り出したカードを箱に戻さない場合、1回目と3回目に取り出したカード\\
の文字が一致する確率を求めよ。\\
(3)取り出したカードを箱に戻さない場合、2回目に取り出したカードの文字が\\
Cであるとき、1回目と3回目に取り出したカードの文字が一致する\\
条件つき確率を求めよ。\\
\end{eqnarray}
2022北海道大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ 箱の中に1文字ずつ書かれたカードが10枚ある。そのうち5枚にはA、\\
3枚にはB、2枚にはCと書かれている。箱から1枚ずつ、3回カードを\\
取り出す試行を考える。\\
(1)カードを取り出すごとに箱に戻す場合、1回目と3回目に取り出したカード\\
の文字が一致する確率を求めよ。\\
(2)取り出したカードを箱に戻さない場合、1回目と3回目に取り出したカード\\
の文字が一致する確率を求めよ。\\
(3)取り出したカードを箱に戻さない場合、2回目に取り出したカードの文字が\\
Cであるとき、1回目と3回目に取り出したカードの文字が一致する\\
条件つき確率を求めよ。\\
\end{eqnarray}
2022北海道大学文系過去問
福田の数学〜東京工業大学2022年理系第4問〜複素数平面上の点の軌跡と線分の通過範囲
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とする。複素数zが|z-1|=aかつz≠\frac{1}{2}を満たしながら\\
動くとき、複素数平面上の点w=\frac{z-3}{1-2z}が描く図形をKとする。\\
このとき、次の問いに答えよ。\\
(1)Kが円となるためのaの条件を求めよ。また、そのとき\\
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。\\
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる\\
線分が通過する領域を複素数平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とする。複素数zが|z-1|=aかつz≠\frac{1}{2}を満たしながら\\
動くとき、複素数平面上の点w=\frac{z-3}{1-2z}が描く図形をKとする。\\
このとき、次の問いに答えよ。\\
(1)Kが円となるためのaの条件を求めよ。また、そのとき\\
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。\\
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる\\
線分が通過する領域を複素数平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問
福田の入試問題解説〜北海道大学2022年文系第3問〜直角三角形と内接円
単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ \angle A=90°,\angle B=60°である直角三角形ABCにおいて、\\
その内接円の中心をO、半径をrとおく。またa=BCとする。\\
(1)rをaで表せ。\\
(2)次の条件を満たす負でない整数k,l,m,nの組を一つ求めよ。\\
OA:OB=1:k+\sqrt{l}, OA:OC=1:m+\sqrt{n}
\end{eqnarray}
2022北海道大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ \angle A=90°,\angle B=60°である直角三角形ABCにおいて、\\
その内接円の中心をO、半径をrとおく。またa=BCとする。\\
(1)rをaで表せ。\\
(2)次の条件を満たす負でない整数k,l,m,nの組を一つ求めよ。\\
OA:OB=1:k+\sqrt{l}, OA:OC=1:m+\sqrt{n}
\end{eqnarray}
2022北海道大学文系過去問
福田の数学〜東京工業大学2022年理系第3問〜直角三角形の頂点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ \alphaは0 \lt \alpha \lt \frac{\pi}{2}を満たす実数とする。\angle A=\alphaおよび\angle P=\frac{\pi}{2}を満たす直角三角形APB\\
が、次の2つの条件(\textrm{a}),(\textrm{b})を満たしながら、時刻t=0から時刻t=\frac{\pi}{2}まで\\
xy平面上を動くとする。\\
(\textrm{a})時刻tでの点A,Bの座標は、それぞれA(\sin t,0),B(0, \cos t)である。\\
(\textrm{b})点Pは第一象限内にある。\\
このとき、次の問いに答えよ。\\
(1)点Pはある直線上を動くことを示し、その直線の方程式を\alphaを用いて表せ。\\
(2)時刻t=0から時刻t=\frac{\pi}{2}までの間に点Pが動く道のりを\alphaを用いて表せ。\\
(3)xy平面内において、連立不等式\\
x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0\\
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ \alphaは0 \lt \alpha \lt \frac{\pi}{2}を満たす実数とする。\angle A=\alphaおよび\angle P=\frac{\pi}{2}を満たす直角三角形APB\\
が、次の2つの条件(\textrm{a}),(\textrm{b})を満たしながら、時刻t=0から時刻t=\frac{\pi}{2}まで\\
xy平面上を動くとする。\\
(\textrm{a})時刻tでの点A,Bの座標は、それぞれA(\sin t,0),B(0, \cos t)である。\\
(\textrm{b})点Pは第一象限内にある。\\
このとき、次の問いに答えよ。\\
(1)点Pはある直線上を動くことを示し、その直線の方程式を\alphaを用いて表せ。\\
(2)時刻t=0から時刻t=\frac{\pi}{2}までの間に点Pが動く道のりを\alphaを用いて表せ。\\
(3)xy平面内において、連立不等式\\
x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0\\
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。
\end{eqnarray}
2022東京工業大学理系過去問
福田の入試問題解説〜北海道大学2022年文系第2問〜数列の一般項の最小と部分和の最小
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ \left\{a_n\right\}をa_1=-15および\\
a_{n+1}=a_n+\frac{n}{5}-2 (n=1,2,3,\ldots)\\
を満たす数列とする。\\
(1)a_nが最小となる自然数nを全て求めよ。\\
(2)\left\{a_n\right\}の一般項を求めよ。\\
(3)\sum_{k=1}^na_kが最小となる自然数nを全て求めよ。
\end{eqnarray}
2022北海道大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ \left\{a_n\right\}をa_1=-15および\\
a_{n+1}=a_n+\frac{n}{5}-2 (n=1,2,3,\ldots)\\
を満たす数列とする。\\
(1)a_nが最小となる自然数nを全て求めよ。\\
(2)\left\{a_n\right\}の一般項を求めよ。\\
(3)\sum_{k=1}^na_kが最小となる自然数nを全て求めよ。
\end{eqnarray}
2022北海道大学文系過去問
福田の数学〜東工大2022理系1修正版
単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1, |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1, |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問
福田の数学〜東京工業大学2022年理系第2問〜3つの数の最大公約数
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 3つの正の整数a,b,cの最大公約数が1であるとき、次の問いに答えよ。\\
(1)a+b+c,ab+bc+ca,abcの最大公約数は1であることを示せ。\\
(2)a+b+c,a^2+b^2+c^2,a^3+b^3+c^3の最大公約数となるような正の整数を\\
全て求めよ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 3つの正の整数a,b,cの最大公約数が1であるとき、次の問いに答えよ。\\
(1)a+b+c,ab+bc+ca,abcの最大公約数は1であることを示せ。\\
(2)a+b+c,a^2+b^2+c^2,a^3+b^3+c^3の最大公約数となるような正の整数を\\
全て求めよ。
\end{eqnarray}
2022東京工業大学理系過去問
福田の入試問題解説〜北海道大学2022年文系第1問〜剰余定理と高次不等式の解
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ kを実数の定数とし、\\
f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1\\
とする。\\
(1)f(k-1)の値を求めよ。\\
(2)|k|\lt 2のとき、不等式f(x) \geqq 0を解け。
\end{eqnarray}
2022北海道大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ kを実数の定数とし、\\
f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1\\
とする。\\
(1)f(k-1)の値を求めよ。\\
(2)|k|\lt 2のとき、不等式f(x) \geqq 0を解け。
\end{eqnarray}
2022北海道大学文系過去問
福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲
単元:
#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1, |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1, |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問
福田の数学〜京都大学2022年文系第4問〜線分の中点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ a,bを正の実数とする。直線L:ax+by=1と曲線y=-\frac{1}{x}との2つの交点\\
のうち、y座標が正のものをP、負のものをQとする。また、Lとx軸との交点を\\
Rとし、Lとy軸との交点をSとする。a,bが条件\\
\frac{PQ}{RS}=\sqrt2\\
を満たしながら動くとき、線分PQの中点の軌跡を求めよ。
\end{eqnarray}
2022京都大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ a,bを正の実数とする。直線L:ax+by=1と曲線y=-\frac{1}{x}との2つの交点\\
のうち、y座標が正のものをP、負のものをQとする。また、Lとx軸との交点を\\
Rとし、Lとy軸との交点をSとする。a,bが条件\\
\frac{PQ}{RS}=\sqrt2\\
を満たしながら動くとき、線分PQの中点の軌跡を求めよ。
\end{eqnarray}
2022京都大学文系過去問
福田の数学・入試問題解説〜東北大学2022年理系第6問〜円柱と球の共通部分の体積
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 半径1の円を底面とする高さが\sqrt3の直円柱と、半径がrの球を考える。\\
直円柱の底面の中心と球の中心が一致するとき、直円柱の内部と球の内部の\\
共通部分の体積V(r)を求めよ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}}\ 半径1の円を底面とする高さが\sqrt3の直円柱と、半径がrの球を考える。\\
直円柱の底面の中心と球の中心が一致するとき、直円柱の内部と球の内部の\\
共通部分の体積V(r)を求めよ。
\end{eqnarray}
2022東北大学理系過去問
2022九州大
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
kは実数であり,整式f(x)を$ f(x)=x^4+6x^3-kx^2+2kx-64 $で定める.
f(x)=0が虚数解をもつとき,
(1)f(x)はx-2で割り切れることを示せ.
(2)f(x)=0は負の実数解をもつことを示せ.
(3)f(x)=0のすべての実数解が整数で,すべての虚数解の実部と虚部が
ともに整数である.kの値を求めよ.
2022九州大過去問
この動画を見る
kは実数であり,整式f(x)を$ f(x)=x^4+6x^3-kx^2+2kx-64 $で定める.
f(x)=0が虚数解をもつとき,
(1)f(x)はx-2で割り切れることを示せ.
(2)f(x)=0は負の実数解をもつことを示せ.
(3)f(x)=0のすべての実数解が整数で,すべての虚数解の実部と虚部が
ともに整数である.kの値を求めよ.
2022九州大過去問
福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xy平面上の2直線L_1,L_2は直交し、交点のx座標は\frac{3}{2}である。\\
また、L_1,L_2は共に曲線C:y=\frac{x^2}{4}に接している。このとき、L_1,L_2およびCで\\
囲まれる図形の面積を求めよ。
\end{eqnarray}
2022京都大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ xy平面上の2直線L_1,L_2は直交し、交点のx座標は\frac{3}{2}である。\\
また、L_1,L_2は共に曲線C:y=\frac{x^2}{4}に接している。このとき、L_1,L_2およびCで\\
囲まれる図形の面積を求めよ。
\end{eqnarray}
2022京都大学文系過去問
2022九州大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数m,nは$ n^4=1+210m^2 $を満たす.
(1)$\dfrac{n^2+1}{2},\dfrac{n^2-1}{2}$は互いに素な整数であることを示せ.
(2)$ n^2-1 $は168の倍数であることを示せ.
(3)(m,n)を1組求めよ.
2022九州大過去問
この動画を見る
自然数m,nは$ n^4=1+210m^2 $を満たす.
(1)$\dfrac{n^2+1}{2},\dfrac{n^2-1}{2}$は互いに素な整数であることを示せ.
(2)$ n^2-1 $は168の倍数であることを示せ.
(3)(m,n)を1組求めよ.
2022九州大過去問
福田の数学・入試問題解説〜東北大学2022年理系第5問〜空間内の直線上の点列の極限
単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内において、ベクトル\\
\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)\\
が定める直線\\
l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }\\
を考える。点A_1を原点(0,0,0)とし、点A_1から直線l'に下ろした垂線A_1B_1と\\
おく。次に、点B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })から直線lに下ろした垂線をB_1A_2とおく。\\
同様に、点A_k(s_k\overrightarrow{ a })から直線l'に下ろした垂線をA_kB_k、点B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })から直線l\\
に下ろした垂線をB_kA_{k+1}とする手順を繰り返して、点A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })\\
(nは正の整数)を定める。\\
(1)s_nを用いてs_{n+1}を表せ。\\
(2)極限値S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_nを求めよ。\\
(3)(2)で求めたS,Tに対して、点A,BをそれぞれA(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })とおくと、\\
直線ABは2直線l,l'の両方と直交することを示せ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内において、ベクトル\\
\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)\\
が定める直線\\
l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }\\
を考える。点A_1を原点(0,0,0)とし、点A_1から直線l'に下ろした垂線A_1B_1と\\
おく。次に、点B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })から直線lに下ろした垂線をB_1A_2とおく。\\
同様に、点A_k(s_k\overrightarrow{ a })から直線l'に下ろした垂線をA_kB_k、点B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })から直線l\\
に下ろした垂線をB_kA_{k+1}とする手順を繰り返して、点A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })\\
(nは正の整数)を定める。\\
(1)s_nを用いてs_{n+1}を表せ。\\
(2)極限値S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_nを求めよ。\\
(3)(2)で求めたS,Tに対して、点A,BをそれぞれA(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })とおくと、\\
直線ABは2直線l,l'の両方と直交することを示せ。
\end{eqnarray}
2022東北大学理系過去問
福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って\\
頂点をn回移動する。すなわち、この移動経路\\
P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n (ただしP_0=A)\\
において、P_0P_1,P_1P_2,\ldots,P_{n-1}P_nは全て辺であるとする。\\
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点P_nがA,B,Cの\\
いずれかとなるものの総数a_nを求めよ。
\end{eqnarray}
2022京都大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って\\
頂点をn回移動する。すなわち、この移動経路\\
P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n (ただしP_0=A)\\
において、P_0P_1,P_1P_2,\ldots,P_{n-1}P_nは全て辺であるとする。\\
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点P_nがA,B,Cの\\
いずれかとなるものの総数a_nを求めよ。
\end{eqnarray}
2022京都大学文系過去問
2022早稲田大(社)整式の剰余
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整式P(x)をx-1で割ると1あまり,$ (x+1)^2 $で割ると3x+2あまる.
P(x)を次の式で割ったあまりは?
(1)$ x+1$ (2)$(x+1)(x-1)$ (3)$(x-1)(x+1)^2$
2022早稲田大過去問
この動画を見る
整式P(x)をx-1で割ると1あまり,$ (x+1)^2 $で割ると3x+2あまる.
P(x)を次の式で割ったあまりは?
(1)$ x+1$ (2)$(x+1)(x-1)$ (3)$(x-1)(x+1)^2$
2022早稲田大過去問
福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ xy平面の第1象限内において、直線l:y=mx (m \gt 0)とx軸の両方に\\
接している半径aの円をCとし、円Cの中心を通る直線y=tx (t \gt 0)を考える。\\
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。\\
ただし、b \gt aとする。\\
(1)mを用いてtを表せ。\\
(2)tを用いて\frac{b}{a}を表せ。\\
(3)極限値\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)を求めよ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{4}}}\ xy平面の第1象限内において、直線l:y=mx (m \gt 0)とx軸の両方に\\
接している半径aの円をCとし、円Cの中心を通る直線y=tx (t \gt 0)を考える。\\
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。\\
ただし、b \gt aとする。\\
(1)mを用いてtを表せ。\\
(2)tを用いて\frac{b}{a}を表せ。\\
(3)極限値\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)を求めよ。
\end{eqnarray}
2022東北大学理系過去問
東京大2022理系
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。
2022東京大学理系
この動画を見る
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。
2022東京大学理系
福田の入試問題解説〜東京大学2022年文系第4問〜複雑な反復試行の確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル\overrightarrow{ v_k }を\\
\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})\\
と定める。投げたとき表と裏がどちらも\frac{1}{2}の確率で出るコインをN回投げて、\\
座標平面上に点X_0,X_1,X_2,\ldots,X_Nを以下の規則(\textrm{i}),(\textrm{ii})に従って定める。\\
(\textrm{i})X_0はOにある。\\
(\textrm{ii})nを1以上N以下の整数とする。X_{n-1}が定まったとし、\\
X_nを次のように定める。\\
・n回目のコイン投げで表が出た場合、\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }によりX_nを定める。\\
ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。\\
・n回目のコイン投げで裏が出た場合、X_nをX_{n-1}と定める。\\
(1)N=5とする。X_5がOにある確率を求めよ。\\
(2)N=98とする。X_{98}がOにあり、かつ、表が90回、裏が8回出る確率を求めよ。
\end{eqnarray}
2022東京大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{4}}}\ Oを原点とする座標平面上で考える。0以上の整数kに対して、ベクトル\overrightarrow{ v_k }を\\
\overrightarrow{ v_k }=(\cos\frac{2k\pi}{3}, \sin\frac{2k\pi}{3})\\
と定める。投げたとき表と裏がどちらも\frac{1}{2}の確率で出るコインをN回投げて、\\
座標平面上に点X_0,X_1,X_2,\ldots,X_Nを以下の規則(\textrm{i}),(\textrm{ii})に従って定める。\\
(\textrm{i})X_0はOにある。\\
(\textrm{ii})nを1以上N以下の整数とする。X_{n-1}が定まったとし、\\
X_nを次のように定める。\\
・n回目のコイン投げで表が出た場合、\overrightarrow{ OX_n }=\overrightarrow{ OX_{n-1} }+\overrightarrow{ v_k }によりX_nを定める。\\
ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。\\
・n回目のコイン投げで裏が出た場合、X_nをX_{n-1}と定める。\\
(1)N=5とする。X_5がOにある確率を求めよ。\\
(2)N=98とする。X_{98}がOにあり、かつ、表が90回、裏が8回出る確率を求めよ。
\end{eqnarray}
2022東京大学文系過去問
福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{3}}}\ 正の整数nに対して、\\
S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)\\
とする。\\
(1)正の実数xに対して、次の不等式が成り立つことを示せ。\\
\\
\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}\\
\\
(2)極限値\lim_{n \to \infty}S_nを求めよ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{3}}}\ 正の整数nに対して、\\
S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)\\
とする。\\
(1)正の実数xに対して、次の不等式が成り立つことを示せ。\\
\\
\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}\\
\\
(2)極限値\lim_{n \to \infty}S_nを求めよ。
\end{eqnarray}
2022東北大学理系過去問
【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(1)
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
(1) $2x^2+y^2$の最小値
(2) $\log_{10}x+2\log_{10}y$ の最大値
(3) $\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
この動画を見る
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
(1) $2x^2+y^2$の最小値
(2) $\log_{10}x+2\log_{10}y$ の最大値
(3) $\dfrac{1}{x}+\dfrac{2}{y}$ の最小値