大学入試過去問(数学) - 質問解決D.B.(データベース) - Page 83

大学入試過去問(数学)

福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC
と交わる点をRとする。このとき
$\overrightarrow{ OR }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ \overrightarrow{ OA }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ \overrightarrow{ OC }$
である。

2021上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$s$を正の実数として、$x,y$の連立方程式
$\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.$
を考える。以下では$\log_{10}2=0.301,$
$\log_{10}3=0.4771$として計算せよ。

$(\textrm{a})$この連立方程式の解が2組あるための必要十分条件は

$0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。

$(\textrm{b})\ s=2$のとき$x \lt y$となる解を$(x_0,\ y_0)$とする。
$y_0$を小数第3位で四捨五入した数の整数部分は$\boxed{\ \ ウ\ \ }$、
小数第1位は$\boxed{\ \ エ\ \ }$、小数第2位は$\boxed{\ \ オ\ \ }$である。

2021上智大学文系過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$立方体OADB-CFGEを考える。$0 \leqq x \leqq 1$となる実数xに対し、
$\overrightarrow{ OP }=x\ \overrightarrow{ OG }$と
なる点Pを考え、$\angle APB=\theta$とおく。

(1)$x=0$のとき、$\theta=\boxed{\ \ し\ \ }$である。また、$x=1$のとき、$\theta=\boxed{\ \ す\ \ }$である。

$\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }$の選択肢
$(\textrm{a})0  (\textrm{b})\frac{\pi}{6}  (\textrm{c})\frac{\pi}{3}  (\textrm{d})\frac{\pi}{2}$
$(\textrm{e})\frac{2}{3}\pi  (\textrm{f})\frac{5}{6}\pi  (\textrm{g})\pi $

(2)$0 \lt x \lt 1$の範囲で$\theta=\frac{\pi}{2}$となるxの値は、$x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。

(3)$y=\cos\theta$とおき、yをxの関数と考える。このとき、yをxで表せ。また、
$0 \leqq x \leqq 1$の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・
座標軸との共有点・極値・変曲点などを明らかにせよ。

2021上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $i$を虚数単位とする。複素数zの絶対値を$|z|$と表す。
$w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}$ とし、$\alpha=w+w^4$ とする。

(1)$\alpha^2=\boxed{\ \ お\ \ }$である。これより、$\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}$である。
(2)複素数平面上の2点$\frac{i}{2}$,-1間の距離は$\boxed{\ \ か\ \ }$である。
(3)複素数平面上の2点$w^2,$ -1間の距離は$\boxed{\ \ き\ \ }$である。
(4)$\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta)$ (ただし、$r \gt 0,\ 0 \leqq \theta \lt 2\pi$)
とおくとき、$r=\boxed{\ \ く\ \ }$であり、$\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi$である。
(5)複素数平面上で、-1を中心都市$w^2$を通る円上をzが動くとする。
$x=\frac{1}{z}$とするとき、$x$は$|1+x|=\boxed{\ \ け\ \ }|x|$を満たし、$\boxed{\ \ こ\ \ }$を
中心とする半径$\boxed{\ \ さ\ \ }$の円を描く。

$\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }$の選択肢
$(\textrm{a})1  (\textrm{b})2  (\textrm{c})\alpha  (\textrm{d})2\alpha$
$(\textrm{e})\frac{\alpha}{2}+1  (\textrm{f})\frac{\alpha}{2}-1  (\textrm{g})-\frac{\alpha}{2}+1  (\textrm{h})-\frac{\alpha}{2}-1$
$(\textrm{i})\alpha+1  (\textrm{j})\alpha-1  (\textrm{k})-\alpha+1  (\textrm{l})-\alpha-1$
$(\textrm{m})\alpha+\frac{1}{2}  (\textrm{n})\alpha-\frac{1}{2}  (\textrm{o})-\alpha+\frac{1}{2}  (\textrm{p})-\alpha-\frac{1}{2}$

2021上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$

$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の  $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての  $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ  $\\(\textrm{b})$成り立つような実数Kが存在する 
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。

2021上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(2)〜常用対数の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}} (2)(\textrm{i})$不等式
$\frac{k-1}{k} \lt \log_{10}7 \lt \frac{k}{k+1}$
を満たす自然数$k$は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})7^{35}$は$\boxed{\ \ セ\ \ }$桁の整数である。

2021上智大学理工学部過去問
この動画を見る 

数学「大学入試良問集」【19−7 三角関数と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$t=\tan\displaystyle \frac{x}{2}$とおく。
このとき、次の各問いに答えよ。

(1)
$\displaystyle \frac{dt}{dx}$を$t$を用いて表せ。

(2)
$\cos\ x$を$t$を用いて表せ。

(3)
曲線$y=\displaystyle \frac{1}{\cos\ x}$と2直線$x=0,x=\displaystyle \frac{\pi}{3}$および$x$軸で囲まれた部分の面積$S$を求めよ。
この動画を見る 

福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 媒介変数表示
$x=\frac{2}{\cos\theta}, y=3\tan\theta+1$
で表される図形Cを考える。

(1)Cは頂点$(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })$、焦点$(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })$、
漸近線$y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }$をもつ双曲線である。
(2)双曲線Cと直線$x=4$は、2点$(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})$
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田の数学〜中央大学2021年経済学部第3問〜円と円の位置関係と共通接線

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$円$C_1:x^2+y^2-r=0$と円$C_2:x^2-10x+y^2+21=0$について、
以下の問いに答えよ。ただし、rは正の定数とする。

(1)円$C_1$と円$C_2$が接するとき、$r$の値を求めよ。
(2)$r=1$とする。円C_1の接線lが円$C_2$にも接しているとき、
lの方程式を求めよ。解答は$y=ax+b$の形で表せ。

2021中央大学経済学部過去問
この動画を見る 

福田の数学〜中央大学2021年経済学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$1辺の長さが1の正方形の頂点を時計回りにA,B,C,Dとする。点PはAから
出発し、硬貨を投げるたびに正方形の周上を時計回りに動く。1枚の硬貨を投げて
表が出たときにはPは2だけ進み、裏が出たときにはPは1だけ進む。硬貨を投げた
ときに、表と裏の出る確率は等しいとする。このとき以下の問いに答えよ。

(1)硬貨を5回続けて投げたとき、PがAにいる確率を求めよ。
(2)硬貨を10回続けて投げたとき、PがDにいる確率を求めよ。

2021中央大学経済学部過去問
この動画を見る 

【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積S(a)を求めよ。
(2) aが$0<a<1$の範囲を動くとき、S(a)が最大となるaを求めよ。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)次の2つの等式を満たす関数f(x)を求めよ。
$f(0)=-\frac{1}{3}, f'(x)=2x+\int_0^1f(t)dt$

2021中央大学経済学部過去問
この動画を見る 

【理数個別の過去問解説】2011年度東京大学 数学 文系理系第1問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面において、点P(0,1)を中心とする半径1の円をCとする。aが$0<a<1$を満たす実数とし、直線$y=a(x+1)$とCとの交点をQ,Rとする。
(1) △PQRの面積$S(a)$を求めよ。
(2) aが$0<a<1$の範囲を動くとき、$S(a)$が最大となるaを求めよ。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(5)〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)次の条件によって定められる数列$\left\{a_n\right\}$の一般項を求めよ。
$a_1=-1, a_{n+1}=a_n+2・3^{n-1}  (n=1,2,3,\ldots)$

2021中央大学経済学部過去問
この動画を見る 

【数学】(一気見用)高2生必見!! 2019年度8月 第2回 K塾高2模試(※大問1(3)、大問5(*)式に訂正あり)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2019年度8月 第2回 K塾高2模試 総集編
この動画を見る 

数学「大学入試良問集」【19−6 楕円と回転体の体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt a \lt 1$とする。
点$(1,0)$から楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$に引いた接線の接点の$x$座標を$b$とする。

(1)
$b$を$a$で表せ。

(2)
楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$の$b \leqq x \leqq a$の部分と直線$x=b$で囲まれた図形を、$x$軸のまわり1回転してできる回転体の体積$V$を求めよ。

(3)
$V$の値が最大となる$a$の値と、そのときの$V$の最大値を求めよ。
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(4)〜2つのベクトルに垂直な単位ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)2つのベクトル$\overrightarrow{ a }=(4,\ -2,\ 3),\ \overrightarrow{ b }=(-4,\ 5,\ -3)$の両方に垂直な
単位ベクトルを全て求めよ。

2021中央大経済学部過去問
この動画を見る 

【数C】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る 

【数A】高2生必見!! 2019年8月 第2回 K塾高2模試 大問4_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロ を1回投げるごとに次の(規則)に従ってPを動かす。 (規則) ・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。 ・3の目が出たときはx軸の正の方向に2だけ動かす。 ・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。 例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy 座標が2である条件付き確率を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-2_図形と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} (3)-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$
のとき、次の関数が最大値をとるときのxの値を求めよ。
$y=\sin x+\cos^2x$

2021中央大経済学部過去問
この動画を見る 

【数Ⅰ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-1_2次関数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数xについての2つの不等式$ (x-a^2)(x-2a+2)\leqq 0$・・・①$\vert 2x-1\vert\leqq 2$・・・② がある。ただし、aは実数の定数とする。
(1)$a=0$のとき、①を解け。
(2)②を解け。
(3)①かつ②を満たす整数xがちょうど1個だけ存在するようなaの値の範囲を求めよ。
この動画を見る 

【数学】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問1_小問集合 (※(3)問題文に訂正あり)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)$(x+y+2)^2$を展開せよ。
(2)$\dfrac{x^2-2x}{x^2+4x+3}\times\dfrac{2x+2}{x-2}$を計算せよ。
(3)2次関数$y=2x^2-8x+9 (0\leqq x\leqq 1)$における最小値を求めよ。
(4)iを虚数単位とする。$\dfrac{2+i}{1-3i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=3, BC=4\sqrt2, CA=5$である三角形ABCにおいて、$\cos\angle ABC$を求めよ。また、三 角形ABCの面積を求めよ。
(6)男子6人、女子4人の合計10人から3人を選ぶとき、選び方は全部で何通りか。 また、そのうち、女子が少なくとも1人含まれるような選び方は何通りか。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(2)〜常用対数と桁数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(1)$12^{25}$は何桁の整数か.
ただし,$\log_{10}2=0.3010,\log_{10}3=0.4771$とする.

2021中央大経済学部過去問
この動画を見る 

練習問題48 岡山大学2011 面積、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n \in IN,\ 0 \leqq x \leqq 1$
曲線$y=x^2(1-x)^n$と$x$軸で囲まれた図形の面積を$S_n$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\ S_k$を求めよ。

出典:2011年岡山大学 練習問題
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(1)〜2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(1)次の2次方程式において,1つの解が$x=\dfrac{3}{2}-i$であるとき,
実数$a,b$の値を求めよ.ただし,$i$は虚数単位とする.
$-x^2+ax+b=0$

2021中央大経済学部過去問
この動画を見る 
PAGE TOP