数と式
4乗根の有理化
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \left(1+\dfrac{1}{\sqrt[4]{8}+\sqrt{2}+\sqrt[4]{2}+1} \right)^{20}$
これを計算せよ.
この動画を見る
$ \left(1+\dfrac{1}{\sqrt[4]{8}+\sqrt{2}+\sqrt[4]{2}+1} \right)^{20}$
これを計算せよ.
解けるようにできた4次方程式 要工夫
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^2+\dfrac{25x^2}{(x+5)^2}=24$
これを解け.
この動画を見る
$ x^2+\dfrac{25x^2}{(x+5)^2}=24$
これを解け.
素数になる2次式
単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
この動画を見る
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
見掛け倒しの「どっちがでかい?」
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \sqrt[5]{5!}$ vs $\sqrt[6]{6!}$
どちらが大きいか?
この動画を見る
$ \sqrt[5]{5!}$ vs $\sqrt[6]{6!}$
どちらが大きいか?
0.9999999‥‥=1?
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$A,B$は1桁の自然数である.これを解け.
$\sqrt{0.AAA・・・・・・}=0.BBB・・・・・・$
この動画を見る
$A,B$は1桁の自然数である.これを解け.
$\sqrt{0.AAA・・・・・・}=0.BBB・・・・・・$
福田の数学〜早稲田大学2022年人間科学部第1問(1)〜命題の真偽とカードの裏表
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (1)表面にアルファベットが、裏面には自然数が書かれている5枚のカードが、\\
次のように置かれている。\\
\\
{\large\boxed{P}}\hspace{45pt}{\large\boxed{Q}}\hspace{45pt}{\large\boxed{1}}\hspace{45pt}{\large\boxed{3}}\hspace{45pt}{\large\boxed{6}}\hspace{45pt}\\
\\
これら5枚のカードに対する命題「表面がアルファベットPならば、裏面は\\
素数である」の審議を調べるために、できるだけ少ない枚数のカードを裏返\\
して確認したい。左からn番目の位置にあるカードを裏返す必要があるとき\\
にはa_n=1、必要のないときにはa_n=0とするとき\hspace{90pt}\\
\sum_{k=1}^5 a_k2^{k-1}=\boxed{\ \ ア\ \ }\hspace{140pt}\\
\\
である。\hspace{260pt}
\end{eqnarray}
2022早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{1}}\ (1)表面にアルファベットが、裏面には自然数が書かれている5枚のカードが、\\
次のように置かれている。\\
\\
{\large\boxed{P}}\hspace{45pt}{\large\boxed{Q}}\hspace{45pt}{\large\boxed{1}}\hspace{45pt}{\large\boxed{3}}\hspace{45pt}{\large\boxed{6}}\hspace{45pt}\\
\\
これら5枚のカードに対する命題「表面がアルファベットPならば、裏面は\\
素数である」の審議を調べるために、できるだけ少ない枚数のカードを裏返\\
して確認したい。左からn番目の位置にあるカードを裏返す必要があるとき\\
にはa_n=1、必要のないときにはa_n=0とするとき\hspace{90pt}\\
\sum_{k=1}^5 a_k2^{k-1}=\boxed{\ \ ア\ \ }\hspace{140pt}\\
\\
である。\hspace{260pt}
\end{eqnarray}
2022早稲田大学人間科学部過去問
ざ・一次不定方程式 合同式で楽々
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数x,yについて、$97x+83y=23$を満たす整数解x,yの一般解を求めよ.
この動画を見る
整数x,yについて、$97x+83y=23$を満たす整数解x,yの一般解を求めよ.
3乗根をはずせ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \sqrt[3]{77-20\sqrt{13}}$
これの3乗根を外せ.
この動画を見る
$ \sqrt[3]{77-20\sqrt{13}}$
これの3乗根を外せ.
東海大 数1
単元:
#数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 0\lt x\lt 2$で$x$と$x^2$の小数部分が同じであるxを求めよ.
東海大過去問
この動画を見る
$ 0\lt x\lt 2$で$x$と$x^2$の小数部分が同じであるxを求めよ.
東海大過去問
福田の数学〜慶應義塾大学2022年看護医療学部第2問(3)〜平方数を3で割った余りに関する論証
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ (3)次の2つの命題を証明せよ。\hspace{170pt}\\
(\textrm{i})整数nが3の倍数でないならば、n^2を3で割った時の余りは1である。\\
(\textrm{ii})3つの整数x,y,zが等式x^2+y^2=z^2を満たすならば、\hspace{53pt}\\
xとyの少なくとも一方は3の倍数である。\hspace{105pt}\\
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{2}}\ (3)次の2つの命題を証明せよ。\hspace{170pt}\\
(\textrm{i})整数nが3の倍数でないならば、n^2を3で割った時の余りは1である。\\
(\textrm{ii})3つの整数x,y,zが等式x^2+y^2=z^2を満たすならば、\hspace{53pt}\\
xとyの少なくとも一方は3の倍数である。\hspace{105pt}\\
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
福田の数学〜慶應義塾大学2022年看護医療学部第2問(2)〜漸化式と和に関する不等式
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ (2)a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)で与えられる\\
数列\left\{a_n\right\}の一般項はa_n=\boxed{\ \ ア\ \ }である。また\sum_{n=1}^la_n \geqq 20\\
を満たす最小の自然数lは\boxed{\ \ イ\ \ }\ である。\hspace{75pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{2}}\ (2)a_1=4,\ \ \ 4a_{n+1}=2a_n+3(n=1,2,3,\ldots)で与えられる\\
数列\left\{a_n\right\}の一般項はa_n=\boxed{\ \ ア\ \ }である。また\sum_{n=1}^la_n \geqq 20\\
を満たす最小の自然数lは\boxed{\ \ イ\ \ }\ である。\hspace{75pt}
\end{eqnarray}
2022慶應義塾大学看護医療学科過去問
5次式の因数分解 R15中学生はご遠慮ください
単元:
#数Ⅰ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^5+16x+32$
これを因数分解(整数係数)せよ.
この動画を見る
$ x^5+16x+32$
これを因数分解(整数係数)せよ.
5次方程式
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^4=\dfrac{11x^6}{6x-11}$
これを解け.
この動画を見る
$ x^4=\dfrac{11x^6}{6x-11}$
これを解け.
実数とは? 法政大学
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a,b,cの値を求めよ(a,b,c:実数)
$a^2+b^2+c^2=2(-a+c-1)$
法政大学
この動画を見る
a,b,cの値を求めよ(a,b,c:実数)
$a^2+b^2+c^2=2(-a+c-1)$
法政大学
素因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$64000001$を素因数分解すると3つの素因数分解をもつ.
$pqr(p \lt q \lt r)q$の値を求めよ.
この動画を見る
$64000001$を素因数分解すると3つの素因数分解をもつ.
$pqr(p \lt q \lt r)q$の値を求めよ.
連立3元3次方程式
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\lt y\lt z$とする.これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^2+y^2+z^2=38 \\\
x^3+y^3+z^3=144
\end{array}
\right.
\end{eqnarray}$
この動画を見る
$x\lt y\lt z$とする.これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+z=6 \\
x^2+y^2+z^2=38 \\\
x^3+y^3+z^3=144
\end{array}
\right.
\end{eqnarray}$
二重根号にビビるな! 東京電機大学
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt x = \sqrt {17 + \sqrt {253}} - \sqrt {17 - \sqrt {253}}$
整数xを求めよ
東京電機大学
この動画を見る
$\sqrt x = \sqrt {17 + \sqrt {253}} - \sqrt {17 - \sqrt {253}}$
整数xを求めよ
東京電機大学
ルートが出てきたら〇〇せよ! 式の値
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x \times y = 36$ , $\frac{1}{\sqrt x} + \frac{1}{\sqrt y} = \frac{5}{6}$
$x+y=?$
この動画を見る
$x \times y = 36$ , $\frac{1}{\sqrt x} + \frac{1}{\sqrt y} = \frac{5}{6}$
$x+y=?$
高校範囲の因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
4次式$x^4+x^2-12$を次の範囲で因数分解せよ
㋐有理数
㋑実数
㋒複素数
この動画を見る
4次式$x^4+x^2-12$を次の範囲で因数分解せよ
㋐有理数
㋑実数
㋒複素数
【保存版】絶対値の方程式の裏技
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
絶対値の方程式の裏技紹介動画です
この動画を見る
絶対値の方程式の裏技紹介動画です
式の値 立教大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a-b+c = 1$ , $a^2+b^2+c^2 = 29$のとき
$ac - ab -bc$の値を求めよ
立教大学
この動画を見る
$a-b+c = 1$ , $a^2+b^2+c^2 = 29$のとき
$ac - ab -bc$の値を求めよ
立教大学
福田の数学〜慶應義塾大学2022年商学部第3問〜絶対値の付いた2次関数のグラフと直線の共有点と面積
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mを実数とし、関数y=|x^2-5x+4|のグラフをC、直線y=mxをlとする。\\
(1)グラフCと直線lの共有点の個数は\\
\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }のとき0個\\
m=\boxed{\ \ エオ\ \ }のとき1個\\
m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ },\ またはm \gt \boxed{\ \ ケ\ \ }のとき2個\\
m=\boxed{\ \ コ\ \ }のとき3個\\
\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }のとき4個\\
以下、グラフCと直線lの共有点の個数が3個の場合を考え、\\
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。\\
\\
(2)3点P,Q,Rのx座標は、順に\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}\ である。\\
\\
(3)グラフCと線分QRで囲まれた部分の面積は\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ mを実数とし、関数y=|x^2-5x+4|のグラフをC、直線y=mxをlとする。\\
(1)グラフCと直線lの共有点の個数は\\
\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }のとき0個\\
m=\boxed{\ \ エオ\ \ }のとき1個\\
m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ },\ またはm \gt \boxed{\ \ ケ\ \ }のとき2個\\
m=\boxed{\ \ コ\ \ }のとき3個\\
\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }のとき4個\\
以下、グラフCと直線lの共有点の個数が3個の場合を考え、\\
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。\\
\\
(2)3点P,Q,Rのx座標は、順に\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}\ である。\\
\\
(3)グラフCと線分QRで囲まれた部分の面積は\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}\ である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
5乗数を平方の和で
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a^2+b^2=5^5$,$a\lt b$
自然数$(a,b)$を3組例示せよ.
この動画を見る
$a^2+b^2=5^5$,$a\lt b$
自然数$(a,b)$を3組例示せよ.
福田の数学〜慶應義塾大学2022年商学部第1問(1)〜倍数の個数を数える
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数\\
は\boxed{\ \ アイウ\ \ }\ 個あり、2,3,5の少なくとも1つで割り切れ、\\
かつ6で割り切れない数は\boxed{\ \ エオカ\ \ }\ 個ある。
\end{eqnarray}
2022慶應義塾大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ (1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数\\
は\boxed{\ \ アイウ\ \ }\ 個あり、2,3,5の少なくとも1つで割り切れ、\\
かつ6で割り切れない数は\boxed{\ \ エオカ\ \ }\ 個ある。
\end{eqnarray}
2022慶應義塾大学商学部過去問
ただの計算問題
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \sqrt{101^2+101^2・102^2+102^2}$
これを計算せよ.
この動画を見る
$ \sqrt{101^2+101^2・102^2+102^2}$
これを計算せよ.
正しいか、正しくないか
式の値 筑波大
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
実数a,b,c,dが4つの等式
$a^2+b^2 = 1$ , $c^2+d^2 = 1$ ,
$ac +bd = 0$ , $ad +bc = 0 $を満たすとき
積abcdを求めよ
筑波大学
この動画を見る
実数a,b,c,dが4つの等式
$a^2+b^2 = 1$ , $c^2+d^2 = 1$ ,
$ac +bd = 0$ , $ad +bc = 0 $を満たすとき
積abcdを求めよ
筑波大学
破れたページは何ページ目?
【無理数とは!】平方根(有理数と無理数)後編:教科書順で内容確認~全国入試問題解法
単元:
#数学(中学生)#中3数学#平方根#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根(有理数と無理数)に関して解説していきます.
この動画を見る
平方根(有理数と無理数)に関して解説していきます.