2次方程式と2次不等式
連立二元4次方程式
単元:
#数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#2次方程式と2次不等式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
x^4+y^4=1234
\end{array}
\right.
\end{eqnarray}$
この動画を見る
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=2 \\
x^4+y^4=1234
\end{array}
\right.
\end{eqnarray}$
法政大 解の配置
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
周囲の長さが$\ell$,対角線の長さが2の長方形$\ell$の範囲を求めよ.
法政大過去問
この動画を見る
周囲の長さが$\ell$,対角線の長さが2の長方形$\ell$の範囲を求めよ.
法政大過去問
二次方程式
単元:
#数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{1}{2}x^2-4×10×82×6562=\dfrac{1}{2}$
この動画を見る
これを解け.
$\dfrac{1}{2}x^2-4×10×82×6562=\dfrac{1}{2}$
文字があると中学生は困ってしまうよね。二次方程式の応用。 2通りで解説 芝浦工大柏
単元:
#数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a>0とする。
xについての二次方程式
$x^2+2ax-a^2=0$の解が$x= - a ± 10 \sqrt 2$のときa=?
芝浦工業大学柏高等学校
この動画を見る
a>0とする。
xについての二次方程式
$x^2+2ax-a^2=0$の解が$x= - a ± 10 \sqrt 2$のときa=?
芝浦工業大学柏高等学校
二次方程式の応用 慶應志木
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式$2x^2+24x+a= 0$の解が偶数となるような正の整数aを全て求めよ。
慶應義塾志木高等学校
この動画を見る
2次方程式$2x^2+24x+a= 0$の解が偶数となるような正の整数aを全て求めよ。
慶應義塾志木高等学校
2次式 連立方程式 国学院高校
単元:
#数学(中学生)#中2数学#連立方程式#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2y = 7 \\
(x-y)^2+2(x-y)-15 = 0
\end{array}
\right.
\end{eqnarray}
x=? y=?
(x<y)
國學院高等学校
この動画を見る
\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2y = 7 \\
(x-y)^2+2(x-y)-15 = 0
\end{array}
\right.
\end{eqnarray}
x=? y=?
(x<y)
國學院高等学校
二次方程式 国学院高校
単元:
#数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a+b=-6$ , $ab = 5$のとき方程式$(x+a)(x+b)=0$を解け
國學院高等学校
この動画を見る
$a+b=-6$ , $ab = 5$のとき方程式$(x+a)(x+b)=0$を解け
國學院高等学校
もう一つの解はどうやってだすか。二次方程式
【数学】2次方程式:二次方程式の活用 みんなが嫌いな動く点Pを得意に!
福田の数学〜明治大学2022年理工学部第1問(2)〜2次方程式の解の存在範囲
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(2)座標平面上の曲線$x^2+2xy+2y^2=5$を$C$とする。
$(\textrm{a})$直線$2x+y=t$が曲線$C$と共有点をもつとき、実数$t$の取り得る値の範囲は
$\boxed{コ}\leqq t \leqq \boxed{サ}$である。
$(\textrm{b})$直線$2x+y=1$が曲線$C$と$x \geqq 0$の範囲で共有点を少なくとも1個もつとき、
実数$t$ の取り得る値の範囲は$-\frac{1}{2}\sqrt{\boxed{シス}} \leqq t \leqq \boxed{セ}$である。
2022明治大学理工学部過去問
この動画を見る
(2)座標平面上の曲線$x^2+2xy+2y^2=5$を$C$とする。
$(\textrm{a})$直線$2x+y=t$が曲線$C$と共有点をもつとき、実数$t$の取り得る値の範囲は
$\boxed{コ}\leqq t \leqq \boxed{サ}$である。
$(\textrm{b})$直線$2x+y=1$が曲線$C$と$x \geqq 0$の範囲で共有点を少なくとも1個もつとき、
実数$t$ の取り得る値の範囲は$-\frac{1}{2}\sqrt{\boxed{シス}} \leqq t \leqq \boxed{セ}$である。
2022明治大学理工学部過去問
中学生にとっては激ムズすぎる 仙台育英(改)
単元:
#数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2次方程式$2x^2-mx-m=0$の解の1つが1よりも大きいとき、mの値の範囲を求めよ。
(仙台育英学園高等学校 誘導省略)
この動画を見る
2次方程式$2x^2-mx-m=0$の解の1つが1よりも大きいとき、mの値の範囲を求めよ。
(仙台育英学園高等学校 誘導省略)
福田の数学〜早稲田大学2022年理工学部第2問〜条件を満たすm個の2次関数の積でできる2m次方程式の異なる解の総和
単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ p,qを相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。\\
・係数はすべて整数1でx^2の係数は1である。\hspace{100pt}\\
・f(1)=pqである。\hspace{193pt}\\
・方程式f(x)=0は整数解をもつ。\hspace{135pt}\\
以下の問いに答えよ。\hspace{200pt}\\
\\
(1)f(x)をすべて求めよ。\hspace{170pt}\\
(2)(1)で求めたものをf_1(x),f_2(x),\ldots,f_m(x)とする。2m次方程式\hspace{3pt}\\
f_1(x)×f_2(x)×\ldots×f_m(x)=0\hspace{100pt}\\
の相異なる解の総和はp,qによらないことを示せ。\hspace{60pt}
\end{eqnarray}
2022早稲田大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\large\boxed{2}}\ p,qを相異なる素数とする。次の3条件を満たすxの2次式f(x)を考える。\\
・係数はすべて整数1でx^2の係数は1である。\hspace{100pt}\\
・f(1)=pqである。\hspace{193pt}\\
・方程式f(x)=0は整数解をもつ。\hspace{135pt}\\
以下の問いに答えよ。\hspace{200pt}\\
\\
(1)f(x)をすべて求めよ。\hspace{170pt}\\
(2)(1)で求めたものをf_1(x),f_2(x),\ldots,f_m(x)とする。2m次方程式\hspace{3pt}\\
f_1(x)×f_2(x)×\ldots×f_m(x)=0\hspace{100pt}\\
の相異なる解の総和はp,qによらないことを示せ。\hspace{60pt}
\end{eqnarray}
2022早稲田大学理工学部過去問
x,yの2次式の値の範囲
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
x,yは実数とする.
$x^2+2y^2-4y=2$を満たすとき,
$x+4y^2-8y$の値の範囲を求めよ.
この動画を見る
x,yは実数とする.
$x^2+2y^2-4y=2$を満たすとき,
$x+4y^2-8y$の値の範囲を求めよ.
【裏技】2次方程式の裏技
サクッとスッキリ
単元:
#2次方程式と2次不等式
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+\dfrac{1}{c}=1 \\
b+\dfrac{1}{a}=1\\
c+\dfrac{1}{b}=5 \\
\end{array}
\right.
\end{eqnarray}$
$abc$はいくつか?
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+\dfrac{1}{c}=1 \\
b+\dfrac{1}{a}=1\\
c+\dfrac{1}{b}=5 \\
\end{array}
\right.
\end{eqnarray}$
$abc$はいくつか?
因数分解や解の公式が不要な新しい解き方~2次関数・2次方程式~
一文字削除からの判別式【2014年早稲田大学】
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8,a^2+b^2+c^2=32$
を満たす時、実数$c$の最大値を求めよ。
2014早稲田大過去問
この動画を見る
実数$a,b,c$が
$a+b+c=8,a^2+b^2+c^2=32$
を満たす時、実数$c$の最大値を求めよ。
2014早稲田大過去問
福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲
単元:
#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1, |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ a,bを実数とし、f(z)=z^2+az+b とする。a,bが\\
|a| \leqq 1, |b| \leqq 1\\
を満たしながら動くとき、f(z)=0を満たす複素数zが取りうる値の範囲を\\
複素平面上に図示せよ。
\end{eqnarray}
2022東京工業大学理系過去問
これは有名?
連立2元9次方程式
単元:
#数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4y^5+x^5y^4=810 \\
x^3y^6+x^6y^3=945
\end{array}
\right.
\end{eqnarray}$
実数解を求めよ.
この動画を見る
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4y^5+x^5y^4=810 \\
x^3y^6+x^6y^3=945
\end{array}
\right.
\end{eqnarray}$
実数解を求めよ.
ざ・息抜き
単元:
#数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る
$ \sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
xの2022乗の値
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \left(x+\dfrac{1}{x}\right)^2=3$のとき,$ x^{2022}$の値を求めよ.
この動画を見る
$ \left(x+\dfrac{1}{x}\right)^2=3$のとき,$ x^{2022}$の値を求めよ.
小数第2022位の数は?!
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ (6+\sqrt{37})^{2023}$の小数第$2022$位数は?
この動画を見る
$ (6+\sqrt{37})^{2023}$の小数第$2022$位数は?
3乗根をはずせ
単元:
#数Ⅰ#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3$乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
この動画を見る
$3$乗根をはずせ.
$\sqrt[3]{8+\sqrt{189}}$
簡単な根号のついた方程式
単元:
#数Ⅰ#数Ⅱ#数と式#2次関数#複素数と方程式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$ \sqrt{3x^2-4x+11}-\sqrt{3x^2-4x-4}=3$
この動画を見る
これを解け.
$ \sqrt{3x^2-4x+11}-\sqrt{3x^2-4x-4}=3$
整数問題 慶應志木高校2022入試問題解説36問目
単元:
#数学(中学生)#数Ⅰ#数A#2次関数#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xについての2次方程式
$x^2-(4t-1)x+4t^2-2t = 0$の2つの解をα、βとする
5,α,βを辺にもつ三角形が直角三角形のとき
tの値は?
2022慶應義塾志木高等学校
この動画を見る
xについての2次方程式
$x^2-(4t-1)x+4t^2-2t = 0$の2つの解をα、βとする
5,α,βを辺にもつ三角形が直角三角形のとき
tの値は?
2022慶應義塾志木高等学校
4次式の値を求めるだけの問題
単元:
#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=ax^4+bx^3+cx^2+dx$
$f(5)=f(-5)=f(-2)=1$
$f(10)=\Box$を求めよ.
この動画を見る
$f(x)=ax^4+bx^3+cx^2+dx$
$f(5)=f(-5)=f(-2)=1$
$f(10)=\Box$を求めよ.
福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[1]。2次方程式、2次関数、必要十分条件の問題。
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
第2問\ [1] p,qを実数とする。\\
花子さんと太郎さんは、次の二つの2次方程式について考えている。\\
x^2+px+q=0 \ldots①\\
x^2+qx+p=0 \ldots②\\
①または②を満たす実数xの個数をnとおく。\\
\\
(1)p=4,q=-4のとき、n=\boxed{\ \ ア\ \ }である。\\
また、p=1,q=-2のとき、n=\boxed{\ \ イ\ \ }である。\\
(2)p=-6のとき、n=3になる場合を考える。\\
\\
花子:例えば、①と②を共に満たす実数xがあるときはn=3に\\
なりそうだね。\\
太郎:それを\alphaとしたら、\alpha^2-6\alpha+q=0と\alpha^2+q\alpha-6=0が\\
成り立つよ。\\
花子:なるほど。それならば、\alpha^2を消去すれば、\alphaの値が求められそうだね。\\
太郎:確かに\alphaの値が求まるけど、実際にn=3となっているか\\
どうかの確認が必要だね。\\
花子:これ以外にもn=3となる場合がありそうだね。\\
\\
n=3となるqの値は\\
q=\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }\\
である。ただし、\boxed{\ \ ウ\ \ } \lt \boxed{\ \ エ\ \ }とする。\\
\\
p=-6に固定したまま、qの値だけを変化させる。\\
y=x^2-6x+q \ldots③\\
y=x^2+qx-6 \ldots④\\
\\
(1)この二つのグラフについて、q=1のときのグラフを点線で、\\
qの値を1から増加させたときのグラフを実線でそれぞれ表す。\\
このとき、③のグラフの移動の様子を示すと\boxed{\ \ オ\ \ }となり、\\
④のグラフの移動の様子を示すと\boxed{\ \ カ\ \ }となる。\\
\\
\boxed{\ \ オ\ \ }, \boxed{\ \ カ\ \ }については、最も適当なものを、次の⓪~⑦\\
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
なお、x軸とy軸は省略しているが、x軸は右方向、\\
y軸は上方向がそれぞれ正の方向である。\\
(※選択肢は動画参照)\\
\\
(4)\boxed{\ \ ウ\ \ } \lt q \lt \boxed{\ \ エ\ \ }とする。全体集合Uを実数全体の集合とし、\\
Uの部分集合A,Bを\\
\\
A=\left\{x\ |\ x^2-6x+q \lt 0 \right\}\\
B=\left\{x\ |\ x^2+qx-6 \lt 0 \right\}\\
\\
とする。Uの部分集合Xに対し、Xの補集合を\bar{ X }と表す。このとき、\\
次のことが成り立つ。\\
\\
・x \in Aは、x \in Bであるための\boxed{\ \ キ\ \ }。\\
・x \in Bは、x \in \bar{ A }であるための\boxed{\ \ ク\ \ }。\\
\\
\\
\boxed{\ \ キ\ \ }, \boxed{\ \ ク\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪必要条件であるが、十分条件ではない\\
①十分条件であるが、必要条件ではない\\
②必要十分条件である\\
③必要条件でも十分条件でもない
\end{eqnarray}
2022共通テスト数学過去問
この動画を見る
\begin{eqnarray}
第2問\ [1] p,qを実数とする。\\
花子さんと太郎さんは、次の二つの2次方程式について考えている。\\
x^2+px+q=0 \ldots①\\
x^2+qx+p=0 \ldots②\\
①または②を満たす実数xの個数をnとおく。\\
\\
(1)p=4,q=-4のとき、n=\boxed{\ \ ア\ \ }である。\\
また、p=1,q=-2のとき、n=\boxed{\ \ イ\ \ }である。\\
(2)p=-6のとき、n=3になる場合を考える。\\
\\
花子:例えば、①と②を共に満たす実数xがあるときはn=3に\\
なりそうだね。\\
太郎:それを\alphaとしたら、\alpha^2-6\alpha+q=0と\alpha^2+q\alpha-6=0が\\
成り立つよ。\\
花子:なるほど。それならば、\alpha^2を消去すれば、\alphaの値が求められそうだね。\\
太郎:確かに\alphaの値が求まるけど、実際にn=3となっているか\\
どうかの確認が必要だね。\\
花子:これ以外にもn=3となる場合がありそうだね。\\
\\
n=3となるqの値は\\
q=\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }\\
である。ただし、\boxed{\ \ ウ\ \ } \lt \boxed{\ \ エ\ \ }とする。\\
\\
p=-6に固定したまま、qの値だけを変化させる。\\
y=x^2-6x+q \ldots③\\
y=x^2+qx-6 \ldots④\\
\\
(1)この二つのグラフについて、q=1のときのグラフを点線で、\\
qの値を1から増加させたときのグラフを実線でそれぞれ表す。\\
このとき、③のグラフの移動の様子を示すと\boxed{\ \ オ\ \ }となり、\\
④のグラフの移動の様子を示すと\boxed{\ \ カ\ \ }となる。\\
\\
\boxed{\ \ オ\ \ }, \boxed{\ \ カ\ \ }については、最も適当なものを、次の⓪~⑦\\
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
なお、x軸とy軸は省略しているが、x軸は右方向、\\
y軸は上方向がそれぞれ正の方向である。\\
(※選択肢は動画参照)\\
\\
(4)\boxed{\ \ ウ\ \ } \lt q \lt \boxed{\ \ エ\ \ }とする。全体集合Uを実数全体の集合とし、\\
Uの部分集合A,Bを\\
\\
A=\left\{x\ |\ x^2-6x+q \lt 0 \right\}\\
B=\left\{x\ |\ x^2+qx-6 \lt 0 \right\}\\
\\
とする。Uの部分集合Xに対し、Xの補集合を\bar{ X }と表す。このとき、\\
次のことが成り立つ。\\
\\
・x \in Aは、x \in Bであるための\boxed{\ \ キ\ \ }。\\
・x \in Bは、x \in \bar{ A }であるための\boxed{\ \ ク\ \ }。\\
\\
\\
\boxed{\ \ キ\ \ }, \boxed{\ \ ク\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪必要条件であるが、十分条件ではない\\
①十分条件であるが、必要条件ではない\\
②必要十分条件である\\
③必要条件でも十分条件でもない
\end{eqnarray}
2022共通テスト数学過去問
条件不足の連立三元二次方程式
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x,y,z)$の実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y + z-18 \\
x^2+y^2+z^2=108
\end{array}
\right.
\end{eqnarray}$
この動画を見る
$(x,y,z)$の実数解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y + z-18 \\
x^2+y^2+z^2=108
\end{array}
\right.
\end{eqnarray}$
福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [1]cを正の定数とする。xの2次方程式\\
2x^2+(4c-3)x+2c^2-c-11=0 \ldots①\\
について考える。\\
(1)c=1のとき、①の左辺を因数分解すると(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ })(x-\boxed{\ \ ウ\ \ })であるから、\\
①の解はx=-\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }}, \boxed{\ \ ウ\ \ }である。\\
\\
\\
(2)c=2のとき、①の解はx=\frac{-\ \boxed{\ \ エ\ \ }±\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }} であり、大きい方の解を\alphaとすると\\
\frac{5}{\alpha}=\frac{\boxed{\ \ ク\ \ }+\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}である。また、m \lt \frac{5}{\alpha} \lt m+1を満たす整数mは\boxed{\ \ シ\ \ }である。\\
\\
\\
(3)太郎さんと花子さんは、①の解について考察している。\\
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数\\
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。\\
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。 \\
\\
①の解が異なる2つの有理数であるような正の整数cの個数は\boxed{\ \ ス\ \ }個である。
\end{eqnarray}
2021共通テスト数学過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} [1]cを正の定数とする。xの2次方程式\\
2x^2+(4c-3)x+2c^2-c-11=0 \ldots①\\
について考える。\\
(1)c=1のとき、①の左辺を因数分解すると(\boxed{\ \ ア\ \ }\ x+\boxed{\ \ イ\ \ })(x-\boxed{\ \ ウ\ \ })であるから、\\
①の解はx=-\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ア\ \ }}, \boxed{\ \ ウ\ \ }である。\\
\\
\\
(2)c=2のとき、①の解はx=\frac{-\ \boxed{\ \ エ\ \ }±\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キ\ \ }} であり、大きい方の解を\alphaとすると\\
\frac{5}{\alpha}=\frac{\boxed{\ \ ク\ \ }+\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サ\ \ }}である。また、m \lt \frac{5}{\alpha} \lt m+1を満たす整数mは\boxed{\ \ シ\ \ }である。\\
\\
\\
(3)太郎さんと花子さんは、①の解について考察している。\\
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数\\
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。\\
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。 \\
\\
①の解が異なる2つの有理数であるような正の整数cの個数は\boxed{\ \ ス\ \ }個である。
\end{eqnarray}
2021共通テスト数学過去問