三角比(三角比・拡張・相互関係・単位円)
香川県 円 令和4年度 2022 入試問題100題解説94問目!
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
BD:DC=3:1
△BDEの面積は?
*図は動画内参照
2022香川県
この動画を見る
BD:DC=3:1
△BDEの面積は?
*図は動画内参照
2022香川県
三角比の方程式 #Shorts
福岡県 円 令和4年度 2022 入試問題100題解説91問目!
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AB=AC
AE=?
*図は動画内参照
2022福岡県
この動画を見る
AB=AC
AE=?
*図は動画内参照
2022福岡県
三角比の90°以上の有名角 #Shorts
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
三角比の90°以上の有名角に関して解説していきます.
この動画を見る
三角比の90°以上の有名角に関して解説していきます.
三角比の有名角30°45°60° #Shorts
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
三角比の有名角30°45°60°に関して解説していきます.
この動画を見る
三角比の有名角30°45°60°に関して解説していきます.
三角比の拡張 #Shorts
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
三角比の拡張に関して解説していきます.
この動画を見る
三角比の拡張に関して解説していきます.
2022年東京大 (理系)最初の一問!!
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$f(x)=(cosx)log(cosx) -cosx + \int_0^x(cost)log(cost)dt$
f(x)は区間$0<x< \frac{π}{2}$において最小値を持つことを示し、その最小値を求めよ。
2022東京大学理系問題文改め
この動画を見る
$f(x)=(cosx)log(cosx) -cosx + \int_0^x(cost)log(cost)dt$
f(x)は区間$0<x< \frac{π}{2}$において最小値を持つことを示し、その最小値を求めよ。
2022東京大学理系問題文改め
三角比の相互関係 #Shorts
大阪大の問題の背景 特に文系の人見てください
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#複素数平面#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
この動画を見る
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
2つの円 埼玉県 令和4年度 数学 2022 入試問題100題解説77問目!
単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円Oの半径が5㎝
点Rの半径が3㎝
線分PCの長さは?
*図は動画内参照
2022埼玉県
この動画を見る
円Oの半径が5㎝
点Rの半径が3㎝
線分PCの長さは?
*図は動画内参照
2022埼玉県
円の問題 良問です。 神奈川県 2022入試問題解説100問解説!!57問目
知ってれば一瞬!! 名城大学附属2022入試問題解説31問目
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
2022名城大学附属高等学校
この動画を見る
x=?
*図は動画内参照
2022名城大学附属高等学校
円周角 中央大杉並 推薦 2022入試問題解説27問目
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle MBN = ?$
*図は動画内参照
2022中央大学杉並高等学校
この動画を見る
$\angle MBN = ?$
*図は動画内参照
2022中央大学杉並高等学校
cosで合成 2通りで解説!
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{2}cosθ+\frac{\sqrt 3}{2} sinθ$を
$▢cos(θ - ○)$の形に直せ
この動画を見る
$\frac{1}{2}cosθ+\frac{\sqrt 3}{2} sinθ$を
$▢cos(θ - ○)$の形に直せ
高校入試レベルだよ
sin sin sin sin sin sin sin sin sin sin sin sin
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$
\displaystyle \lim_{ θ \to 0 } \frac{sin(sin(sin θ))}{θ}
$
この動画を見る
$
\displaystyle \lim_{ θ \to 0 } \frac{sin(sin(sin θ))}{θ}
$
図形的イメージ
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
(sinx)' = cosx
この動画を見る
(sinx)' = cosx
福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、
後のように話している。
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした
垂線とその水平面との交点のことだよ。
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、
三角比の表を用いて調べたら16°だったよ。
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい
のかな?
図1の$\theta$はちょうど16°であったとする。しかし、図1の縮尺は、水平方向が$\frac{1}{100000}$
であるのに対して鉛直方向は$\frac{1}{25000}$であった。
実際にキャンプ場の地点Aから山頂Bを見上げる角である$\angle BAC$を考えると、
$\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }$である。
したがって、$\angle BAC$の大きさは$\boxed{セ}$、ただし、目の高さは無視して考えるものとする。
$\boxed{セ}$の解答群
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である
⑨64°より大きく65°より小さい
2022共通テスト数学過去問
この動画を見る
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、
後のように話している。
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした
垂線とその水平面との交点のことだよ。
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、
三角比の表を用いて調べたら16°だったよ。
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい
のかな?
図1の$\theta$はちょうど16°であったとする。しかし、図1の縮尺は、水平方向が$\frac{1}{100000}$
であるのに対して鉛直方向は$\frac{1}{25000}$であった。
実際にキャンプ場の地点Aから山頂Bを見上げる角である$\angle BAC$を考えると、
$\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }$である。
したがって、$\angle BAC$の大きさは$\boxed{セ}$、ただし、目の高さは無視して考えるものとする。
$\boxed{セ}$の解答群
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である
⑨64°より大きく65°より小さい
2022共通テスト数学過去問
全米をsin撼させた問題です。
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{sinx}{n} = ?$
(a) 0
(b) 1
(c) 3
(d) 6
この動画を見る
$\frac{sinx}{n} = ?$
(a) 0
(b) 1
(c) 3
(d) 6
福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]右の図のように、$\triangle ABC$の外側に辺AB,BC,CAをそれぞれ1辺とする
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ
線分で結んだ図形を考える。以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$ とする。
(1)$b=6, c=5, \cos A=\frac{3}{5}$のとき、$\sin A=\frac{\boxed{セ}}{\boxed{ソ}}$であり、
$\triangle ABC$の面積は$\boxed{タチ}$、$\triangle AID$の面積は$\boxed{ツテ}$である。
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。
このとき、$S_1-S_2-S_3$ は
・$0° \lt A \lt 90°$のとき$\boxed{ト}$ ・$A=90°$のとき$\boxed{ナ}$
・$90° \lt A \lt 180°$のとき$\boxed{ニ}$
$\boxed{ト}~\boxed{ニ}$の解答群
⓪0である ①正の値である ②負の値である ③正の値も負の値もとる
(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{ヌ}$である。
$\boxed{ヌ}$の解答群
⓪$a \lt b \lt c$ならば$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば$T_1 \lt T_2 \lt T_3$
②Aが鈍角ならば$T_1 \lt T_2$ かつ$T_1 \lt T_3$
③$a,b,c$の値に関係なく、$T_1 = T_2 = T_3$
(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さいもの
を求める。$0° \lt A \lt 90°$のとき、$ID \boxed{ネ} BC$であり、
$(\triangle AID$の外接円の半径)$\boxed{ノ}(\triangle ABCの外接円の半径)$
であるから、外接円の半径が最も小さい三角形は
$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{ハ}$である。
$0° \lt A \lt B \lt 90° \lt C$のとき、$\boxed{ヒ}$である。
$\boxed{ネ}、\boxed{ノ}$の解答群
⓪$\lt$ ①$=$ ②$\gt$
$\boxed{ハ}、\boxed{ヒ}$の解答群
⓪$\triangle ABC$ ①$\triangle AID$ ②$\triangle BEF$ ③$\triangle CGH$
2021共通テスト数学過去問
この動画を見る
${\Large\boxed{1}}$[2]右の図のように、$\triangle ABC$の外側に辺AB,BC,CAをそれぞれ1辺とする
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ
線分で結んだ図形を考える。以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$ とする。
(1)$b=6, c=5, \cos A=\frac{3}{5}$のとき、$\sin A=\frac{\boxed{セ}}{\boxed{ソ}}$であり、
$\triangle ABC$の面積は$\boxed{タチ}$、$\triangle AID$の面積は$\boxed{ツテ}$である。
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。
このとき、$S_1-S_2-S_3$ は
・$0° \lt A \lt 90°$のとき$\boxed{ト}$ ・$A=90°$のとき$\boxed{ナ}$
・$90° \lt A \lt 180°$のとき$\boxed{ニ}$
$\boxed{ト}~\boxed{ニ}$の解答群
⓪0である ①正の値である ②負の値である ③正の値も負の値もとる
(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{ヌ}$である。
$\boxed{ヌ}$の解答群
⓪$a \lt b \lt c$ならば$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば$T_1 \lt T_2 \lt T_3$
②Aが鈍角ならば$T_1 \lt T_2$ かつ$T_1 \lt T_3$
③$a,b,c$の値に関係なく、$T_1 = T_2 = T_3$
(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さいもの
を求める。$0° \lt A \lt 90°$のとき、$ID \boxed{ネ} BC$であり、
$(\triangle AID$の外接円の半径)$\boxed{ノ}(\triangle ABCの外接円の半径)$
であるから、外接円の半径が最も小さい三角形は
$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{ハ}$である。
$0° \lt A \lt B \lt 90° \lt C$のとき、$\boxed{ヒ}$である。
$\boxed{ネ}、\boxed{ノ}$の解答群
⓪$\lt$ ①$=$ ②$\gt$
$\boxed{ハ}、\boxed{ヒ}$の解答群
⓪$\triangle ABC$ ①$\triangle AID$ ②$\triangle BEF$ ③$\triangle CGH$
2021共通テスト数学過去問
半円と円
三角形の面積の最大値 早稲田実業
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABCの面積の最大値=?
*図は動画内参照
早稲田実業学校
この動画を見る
△ABCの面積の最大値=?
*図は動画内参照
早稲田実業学校
円と二等辺三角形 土佐高校
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
BC=?
*図は動画内参照
土佐高等学校(改)
この動画を見る
BC=?
*図は動画内参照
土佐高等学校(改)
3つの半円の面積の和 東北学院
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
3つの半円の面積の和=?
*図は動画内参照
東北学院高等学校
この動画を見る
3つの半円の面積の和=?
*図は動画内参照
東北学院高等学校
【数Ⅰ】三角比総まとめ【三角比の基本をざっくりと振り返ろう】
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
三角比の基本に関して解説していきます.
この動画を見る
三角比の基本に関して解説していきます.
気がつけば一瞬でとろける。
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle A=?$
*図は動画内参照
城西大学付属川越高等学校
この動画を見る
$\angle A=?$
*図は動画内参照
城西大学付属川越高等学校
三角比この覚え方はどうでしょうか?
【高校数学】有名角の面白い覚え方~数学の先生は怒らないでね~【数学Ⅰ】
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
有名角の面白い覚え方紹介動画です
この動画を見る
有名角の面白い覚え方紹介動画です
円の折り返し
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照
関西大倉高等学校
この動画を見る
斜線部の面積=?
*図は動画内参照
関西大倉高等学校