図形と計量 - 質問解決D.B.(データベース) - Page 9

図形と計量

三角比の90°以上の有名角 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の90°以上の有名角に関して解説していきます.
この動画を見る 

三角比の有名角30°45°60° #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の有名角30°45°60°に関して解説していきます.
この動画を見る 

おうぎ形と正方形 令和4年度 愛媛県ラスト問題(改) 数学 2022 入試問題100題解説83問目!

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2022愛媛県
この動画を見る 

おうぎ形と正方形 2通りで解説!令和4年度 茨城県 数学 2022 入試問題100題解説81問目!

アイキャッチ画像
単元: #数学(中学生)#中2数学#数Ⅰ#数A#図形の性質#図形と計量#三角形と四角形#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
点PはBCの中点
PF=?
*図は動画内参照

2022茨城県
この動画を見る 

おうぎ形と正方形 令和4年度 茨城県 数学 2022 入試問題100題解説80問目!

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle AEC=?$
*図は動画内参照

2022茨城県
この動画を見る 

三角比の拡張 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の拡張に関して解説していきます.
この動画を見る 

2022年東京大 (理系)最初の一問!!

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$f(x)=(cosx)log(cosx) -cosx + \int_0^x(cost)log(cost)dt$
f(x)は区間$0<x< \frac{π}{2}$において最小値を持つことを示し、その最小値を求めよ。

2022東京大学理系問題文改め
この動画を見る 

三角比の相互関係 #Shorts

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の相互関係に関して解説していきます.
この動画を見る 

大阪大の問題の背景 特に文系の人見てください

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#複素数平面#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
この動画を見る 

2つの円 埼玉県 令和4年度 数学 2022 入試問題100題解説77問目!

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円Oの半径が5㎝
点Rの半径が3㎝
線分PCの長さは?
*図は動画内参照

2022埼玉県
この動画を見る 

【数学Ⅰ/三角比】円に内接する四角形②

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円に内接する四角形$ABCD$がある。
$AB=\sqrt{ 7 },BC=2\sqrt{ 7 },CD=\sqrt{ 3 },DA=2\sqrt{ 3 }$のとき、次のものを求めよ。

(1)
$\cos\angle ABC$

(2)
対角線$AC$の長さ

(3)
四角形$ABCD$の面積$S$
この動画を見る 

【数学Ⅰ/三角比】円に内接する四角形①

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
円$O$に内接する四角形$ABCD$がある。
$AB=3,$ $BC=CD=\sqrt{ 3 },$ $\cos\angle ABC=\displaystyle \frac{\sqrt{ 3 }}{6}$のとき、次のものを求めよ。
(1)対角線$AC$の長さ
(2)辺$AD$の長さ
(3)円$O$の半径
この動画を見る 

円の問題 良問です。 神奈川県 2022入試問題解説100問解説!!57問目

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△BDF=?
*図は動画内参照

2022神奈川県
この動画を見る 

【数学Ⅰ/三角比】正弦定理を使って辺の比を求める問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、$\displaystyle \frac{\sin A}{4}=\displaystyle \frac{\sin B}{5}=\displaystyle \frac{\sin C}{2}$が成立しているとき、次の問いに答えよ。
(1)3辺の比$a:b:c$を求めよ。
(2)$\cos B$の値を求めよ。
この動画を見る 

【数学Ⅰ/三角比】余弦定理の使い方

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、次の値を求めよ。
(1)$a=2\sqrt{ 3 },b=3,c=30^{ \circ }$のとき、$C$。

(2)$a=8,b=5,c=7$のとき、$C$。
この動画を見る 

【数学Ⅰ/三角比】正弦定理の使い方

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\triangle ABC$において、$a=2\sqrt{ 2 },b=2,A=45^{ \circ }$のとき、$B$および外接円の半径$R$を求めよ。
この動画を見る 

知ってれば一瞬!! 名城大学附属2022入試問題解説31問目

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照

2022名城大学附属高等学校
この動画を見る 

円周角 中央大杉並 推薦 2022入試問題解説27問目

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle MBN = ?$
*図は動画内参照

2022中央大学杉並高等学校
この動画を見る 

cosで合成 2通りで解説!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2}cosθ+\frac{\sqrt 3}{2} sinθ$を
$▢cos(θ - ○)$の形に直せ
この動画を見る 

高校入試レベルだよ

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
高校入試レベルの図形の問題です.
この動画を見る 

sin sin sin sin sin sin sin sin sin sin sin sin

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\displaystyle \lim_{ θ \to 0 } \frac{sin(sin(sin θ))}{θ}
$
この動画を見る 

図形的イメージ

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(sinx)' = cosx
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、\\
後のように話している。\\
\\
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。\\
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、\\
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした\\
垂線とその水平面との交点のことだよ。\\
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、\\
三角比の表を用いて調べたら16°だったよ。\\
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい\\
のかな?\\
\\
図1の\thetaはちょうど16°であったとする。しかし、図1の縮尺は、水平方向が\frac{1}{100000}\\
であるのに対して鉛直方向は\frac{1}{25000}であった。\\
実際にキャンプ場の地点Aから山頂Bを見上げる角である\angle BACを考えると、\\
\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }である。\\
\\
したがって、\angle BACの大きさは\boxed{\ \ セ\ \ }、ただし、目の高さは無視して考えるものとする。\\
\\
\boxed{\ \ セ\ \ }の解答群\\
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい\\
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である\\
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である\\
⑨64°より大きく65°より小さい
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [3] 外接円の半径が3である\triangle ABCを考える。点Aから直線BCへ引いた垂線と直線BC\\
との交点をDとする。\\
\\
(1)AB=5, AC=4とする。このとき\sin\angle ABC=\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}, AD=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }} である。\\
\\
(2) 2辺AB,ACの長さの間に2AB+AC=14 の関係があるとする。\\
このとき、ABの長さの取り得る値の範囲は\boxed{\ \ ト\ \ } \leqq AB \leqq \boxed{\ \ ナ\ \ } であり、\\
AD=\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}AB^2+\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}AB と表せるので、ADの長さの最大値は\boxed{\ \ ヒ\ \ }である。
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

超有名問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
図形内のxの角度を求めよ.
この動画を見る 

全米をsin撼させた問題です。

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{sinx}{n} = ?$
(a) 0
(b) 1
(c) 3
(d) 6
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]右の図のように、\triangle ABCの外側に辺AB,BC,CAをそれぞれ1辺とする\\
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ\\
線分で結んだ図形を考える。以下において\\
BC=a, CA=b, AB=c\\
\angle CAB=A, \angle ABC=B, \angle BCA=C とする。\\
\\
(1)b=6, c=5, \cos A=\frac{3}{5}のとき、\sin A=\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}であり、\\
\triangle ABCの面積は\boxed{\ \ タチ\ \ }、\triangle AIDの面積は\boxed{\ \ ツテ\ \ }である。\\
\\
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。\\
このとき、S_1-S_2-S_3 は\\
・0° \lt A \lt 90°のとき\boxed{\ \ ト\ \ } ・A=90°のとき\boxed{\ \ ナ\ \ }\\
・90° \lt A \lt 180°のとき\boxed{\ \ ニ\ \ }\\
\\
\boxed{\ \ ト\ \ }~\boxed{\ \ ニ\ \ }の解答群\\
⓪0である  ①正の値である  ②負の値である  ③正の値も負の値もとる\\
\\
(3)\triangle AID,\triangle BEF,\triangle CGHの面積をそれぞれT_1,T_2,T_3とする。\\
このとき、\boxed{\ \ ヌ\ \ }である。\\
\\
\boxed{\ \ ヌ\ \ }の解答群\\
⓪a \lt b \lt cならばT_1 \gt T_2 \gt T_3\\
①a \lt b \lt cならばT_1 \lt T_2 \lt T_3\\
②Aが鈍角ならばT_1 \lt T_2 かつT_1 \lt T_3\\
③a,b,cの値に関係なく、T_1 = T_2 = T_3\\
\\
(4)\triangle ABC,\triangle AID,\triangle BEF,\triangle CGHのうち、外接円の半径が最も小さいもの\\
を求める。0° \lt A \lt 90°のとき、ID \boxed{\ \ ネ\ \ } BCであり、\\
(\triangle AIDの外接円の半径)\boxed{\ \ ノ\ \ }(\triangle ABCの外接円の半径)\\
であるから、外接円の半径が最も小さい三角形は\\
0° \lt A \lt B \lt C \lt 90°のとき、\boxed{\ \ ハ\ \ }である。\\
0° \lt A \lt B \lt 90° \lt Cのとき、\boxed{\ \ ヒ\ \ }である。\\
\\
\boxed{\ \ ネ\ \ }、\boxed{\ \ ノ\ \ }の解答群\\
⓪\lt   ①=   ②\gt\\
\\
\boxed{\ \ ハ\ \ }、\boxed{\ \ ヒ\ \ }の解答群\\
⓪\triangle ABC   ①\triangle AID   ②\triangle BEF   ③\triangle CGH\\
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

【数Ⅰ】図形と計量:正四面体の体積を一瞬で求める方法

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【中学数学 三平方の定理 立体図形】
1辺の長さがaの正四面体の体積を求めよ
この動画を見る 

直角に凹ませました

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#平面図形#角度と面積#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x =?$
*図は動画内参照
この動画を見る 

半円と円

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円Oの面積=?
*図は動画内参照
この動画を見る 
PAGE TOP