ユークリッド互除法と不定方程式・N進法
ただの方程式ではないよ
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{x-6}{2020} + \frac{x-5}{2021} + \frac{x-4}{2022} = 3$
この動画を見る
$\frac{x-6}{2020} + \frac{x-5}{2021} + \frac{x-4}{2022} = 3$
解けるように選ばれた数字で作られた問題
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ f(x)=\dfrac{7^x}{7^x+7}$とする.
$f\left(\frac{1}{50} \right)+f\left(\frac{2}{50} \right)+……f\left(\frac{98}{50} \right)+f\left(\frac{99}{50} \right)$
の値を求めよ.
この動画を見る
$ f(x)=\dfrac{7^x}{7^x+7}$とする.
$f\left(\frac{1}{50} \right)+f\left(\frac{2}{50} \right)+……f\left(\frac{98}{50} \right)+f\left(\frac{99}{50} \right)$
の値を求めよ.
N進法
【整数の性質】見終わったら整数の性質が得意になる動画【前編】(数学A)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
最大公約数が15で、最小公倍数が390えある。
2つの自然数をすべて求めよ
(2)
等式$5m+2n=25$を満たす自然数の組をすべて求めよ
(3)
$(m-4)n=12$を満たす自然数の組$(m.n)$をすべて求めよ。
この動画を見る
(1)
最大公約数が15で、最小公倍数が390えある。
2つの自然数をすべて求めよ
(2)
等式$5m+2n=25$を満たす自然数の組をすべて求めよ
(3)
$(m-4)n=12$を満たす自然数の組$(m.n)$をすべて求めよ。
ナイスな不定二次方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
x,yは自然数とする.
$x^2(2-y)+y^2(2-x)=-12$を満たす$(x,y)$をすべて求めよ.
この動画を見る
x,yは自然数とする.
$x^2(2-y)+y^2(2-x)=-12$を満たす$(x,y)$をすべて求めよ.
不定三次方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
a,bを実数とする.
$a^3+b^3+3ab=1,a+b=?$これを解け.
この動画を見る
a,bを実数とする.
$a^3+b^3+3ab=1,a+b=?$これを解け.
数A 整数問題 不定方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$3x-5y=1$を満たす整数の組(x,y)を求めよ
この動画を見る
$3x-5y=1$を満たす整数の組(x,y)を求めよ
一次不定方程式の不可能解の最大値の証明
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
a,bは互いに素な自然数である.x,yは0以上の整数であり,$ax+by$で表せない.
最大の整数はab-a-bであることを示せ.
この動画を見る
a,bは互いに素な自然数である.x,yは0以上の整数であり,$ax+by$で表せない.
最大の整数はab-a-bであることを示せ.
一次不定方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 48以上の整数は0以上の整数x,yを用いて$7x+9y$で表せることを示せ.
この動画を見る
$ 48以上の整数は0以上の整数x,yを用いて$7x+9y$で表せることを示せ.
福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}}\ x,yについての方程式\\
x^2-6xy+y^2=9 \ldots\ldots(*)\\
に関する次の問いに答えよ。\\
(1)x,yがともに正の整数であるような(*)の解のうち、yが最小であるものを\\
求めよ。\\
(2)数列a_1,a_2,a_3,\ldotsが漸化式\\
a_{n+2}-6a_{n+1}+a_n=0 (n=1,2,3,\ldots)\\
を満たすとする。このとき、(x,y)=(a_{n+1},a_n)が(*)を満たすならば、\\
(x,y)=(a_{n+2},a_{n+1})も(*)を満たすことを示せ。\\
(3)(*)の整数解(x,y)は無数に存在することを示せ。
\end{eqnarray}
2022千葉大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{7}}\ x,yについての方程式\\
x^2-6xy+y^2=9 \ldots\ldots(*)\\
に関する次の問いに答えよ。\\
(1)x,yがともに正の整数であるような(*)の解のうち、yが最小であるものを\\
求めよ。\\
(2)数列a_1,a_2,a_3,\ldotsが漸化式\\
a_{n+2}-6a_{n+1}+a_n=0 (n=1,2,3,\ldots)\\
を満たすとする。このとき、(x,y)=(a_{n+1},a_n)が(*)を満たすならば、\\
(x,y)=(a_{n+2},a_{n+1})も(*)を満たすことを示せ。\\
(3)(*)の整数解(x,y)は無数に存在することを示せ。
\end{eqnarray}
2022千葉大学理系過去問
福田の数学〜千葉大学2022年理系第4問〜不定方程式とユークリッドの互除法
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 0以上9999以下の整数を4桁で表示し、以下の操作を行うこととする。\\
ただし、 4桁で表示するとは、整数が100以上999以下の場合は千の位の数字を0、\\
10以上99以下の場合は千の位と百の位の数字を0、1以上9以下の場合は\\
千の位と百の位と十の位の数字を0、そして0はどの位の数字も0とすることである。\\
操作:千の位の数字と十の位の数字を入れ換える。さらに、百の位の数字と\\
一の位の数字を入れ換える。\\
また、整数Lに対し、操作によって得られた整数を\bar{ L }と表す。\\
(1) Mを0以上9999以下の整数とし、M=100x+yのように整数x, y (0 \leqq x \leqq 99,\\
0 \leqq y \leqq 99)を用いて表す。操作によって得られた\bar{ M } がMの\\
\frac{2}{3}倍に3を足した数 に等しいならば、\\
-197x+298y = 9が成り立つことを証明せよ。\\
(2) Nが0以上 9999 以下の整数ならば、操作によって\\
得られた整数\bar{ N }はNの\frac{2}{3}倍に1を足した数と等しくならないことを証明せよ。\\
\end{eqnarray}
2022千葉大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ 0以上9999以下の整数を4桁で表示し、以下の操作を行うこととする。\\
ただし、 4桁で表示するとは、整数が100以上999以下の場合は千の位の数字を0、\\
10以上99以下の場合は千の位と百の位の数字を0、1以上9以下の場合は\\
千の位と百の位と十の位の数字を0、そして0はどの位の数字も0とすることである。\\
操作:千の位の数字と十の位の数字を入れ換える。さらに、百の位の数字と\\
一の位の数字を入れ換える。\\
また、整数Lに対し、操作によって得られた整数を\bar{ L }と表す。\\
(1) Mを0以上9999以下の整数とし、M=100x+yのように整数x, y (0 \leqq x \leqq 99,\\
0 \leqq y \leqq 99)を用いて表す。操作によって得られた\bar{ M } がMの\\
\frac{2}{3}倍に3を足した数 に等しいならば、\\
-197x+298y = 9が成り立つことを証明せよ。\\
(2) Nが0以上 9999 以下の整数ならば、操作によって\\
得られた整数\bar{ N }はNの\frac{2}{3}倍に1を足した数と等しくならないことを証明せよ。\\
\end{eqnarray}
2022千葉大学理系過去問
福田の数学〜九州大学2022年理系第3問〜約数と倍数と不定方程式の自然数解
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 自然数m,nが\\
n^4=1+210m^2 \ldots①\\
を満たすとき、以下の問いに答えよ。\\
(1)\frac{n^2+1}{2},\ \frac{n^2-1}{2}は互いに素な整数であることを示せ。\\
(2)n^2-1は168の倍数であることを示せ。\\
(3)①を満たす自然数の組(m,n)を1つ求めよ。
\end{eqnarray}
2022九州大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ 自然数m,nが\\
n^4=1+210m^2 \ldots①\\
を満たすとき、以下の問いに答えよ。\\
(1)\frac{n^2+1}{2},\ \frac{n^2-1}{2}は互いに素な整数であることを示せ。\\
(2)n^2-1は168の倍数であることを示せ。\\
(3)①を満たす自然数の組(m,n)を1つ求めよ。
\end{eqnarray}
2022九州大学理系過去問
福田の数学〜神戸大学2022年文系第3問〜指数方程式と整数解
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを実数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{130pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{5}とする。m,nの値を求めよ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^5とする。bの値をaを用いて表せ。
\end{eqnarray}
2022神戸大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを実数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{130pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{5}とする。m,nの値を求めよ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^5とする。bの値をaを用いて表せ。
\end{eqnarray}
2022神戸大学文系過去問
福田の数学〜神戸大学2022年理系第5問〜指数方程式と整数解
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ a,bを実数、pを素数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{90pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{p}とする。m,nの値をpを用いて表せ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^pとする。bの値をa,pを用いて表せ。
\end{eqnarray}
2022神戸大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}}\ a,bを実数、pを素数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{90pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{p}とする。m,nの値をpを用いて表せ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^pとする。bの値をa,pを用いて表せ。
\end{eqnarray}
2022神戸大学理系過去問
【不定方程式の特解はこれで楽勝】合同式を使った不定方程式の解き方を解説!〔数学 高校数学〕
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
合同式を使った不定方程式の解き方について解説します。
この動画を見る
合同式を使った不定方程式の解き方について解説します。
福田の数学〜東京工業大学2022年理系第2問〜3つの数の最大公約数
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 3つの正の整数a,b,cの最大公約数が1であるとき、次の問いに答えよ。\\
(1)a+b+c,ab+bc+ca,abcの最大公約数は1であることを示せ。\\
(2)a+b+c,a^2+b^2+c^2,a^3+b^3+c^3の最大公約数となるような正の整数を\\
全て求めよ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 3つの正の整数a,b,cの最大公約数が1であるとき、次の問いに答えよ。\\
(1)a+b+c,ab+bc+ca,abcの最大公約数は1であることを示せ。\\
(2)a+b+c,a^2+b^2+c^2,a^3+b^3+c^3の最大公約数となるような正の整数を\\
全て求めよ。
\end{eqnarray}
2022東京工業大学理系過去問
福田の数学・入試問題解説〜東北大学2022年理系第1問〜不定方程式の整数解の個数
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{1}}}\ Kを3より大きい奇数とし、l+m+n=Kを満たす正の奇数の組(l,m,n)\\
の個数Nを考える。ただし、例えば、K=5のとき、(l,m,n)=(1,1,3)\\
と(l,m,n)=(1,3,1)とは異なる組とみなす。\\
(1)K=99のとき、Nを求めよ。\\
(2)K=99のとき、l,m,nの中に同じ奇数を2つ以上含む組(l,m,n)の個数を\\
求めよ。\\
(3)N \gt Kを満たす最小のKを求めよ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{1}}}\ Kを3より大きい奇数とし、l+m+n=Kを満たす正の奇数の組(l,m,n)\\
の個数Nを考える。ただし、例えば、K=5のとき、(l,m,n)=(1,1,3)\\
と(l,m,n)=(1,3,1)とは異なる組とみなす。\\
(1)K=99のとき、Nを求めよ。\\
(2)K=99のとき、l,m,nの中に同じ奇数を2つ以上含む組(l,m,n)の個数を\\
求めよ。\\
(3)N \gt Kを満たす最小のKを求めよ。
\end{eqnarray}
2022東北大学理系過去問
福田の数学〜京都大学2022年理系第3問〜3つの数の最大公約数
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ nを自然数とする。3つの整数n^2+2,n^4+2,n^6+2の最大公約数A_nを求めよ。
\end{eqnarray}
2022京都大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ nを自然数とする。3つの整数n^2+2,n^4+2,n^6+2の最大公約数A_nを求めよ。
\end{eqnarray}
2022京都大学理系過去問
不定方程式
単元:
#数A#複素数と方程式#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$を実数とする.
$ x^3-y^3+(x-y)^3-36xy=3456$のとき,$ x-y$の値を求めよ.
この動画を見る
$x,y$を実数とする.
$ x^3-y^3+(x-y)^3-36xy=3456$のとき,$ x-y$の値を求めよ.
【数学A/整数】 n進法→10進法(小数)
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の数を10進法の小数で表せ。
(1)$0.101_{(2)}$
(2)$0.24_{(5)}$
この動画を見る
次の数を10進法の小数で表せ。
(1)$0.101_{(2)}$
(2)$0.24_{(5)}$
【数学A/整数】10進法をn進法で表す
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の10進法を[ ]内の表し方で表せ。
(1)57 [2進法]
(2)83 [5進法]
この動画を見る
次の10進法を[ ]内の表し方で表せ。
(1)57 [2進法]
(2)83 [5進法]
◆わかりやすく◆数学A・整数 n進法を10進法で表す
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の数を10進法で表せ。
(1)$1101_{(2)}$
(2)$231_{(4)}$
この動画を見る
次の数を10進法で表せ。
(1)$1101_{(2)}$
(2)$231_{(4)}$
【わかりやすく解説】等式を満たす自然数を求める(数学A・整数)
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
等式$3x+4y=45$を満たす自然数$x,y$の組を全て求めよ。
この動画を見る
等式$3x+4y=45$を満たす自然数$x,y$の組を全て求めよ。
【テストによく出る】数学A 一次不定方程式(ユークリッドの互除法を使って特殊解を求める)
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
不定方程式$90x-37y=1$の整数解を求めよ。
この動画を見る
不定方程式$90x-37y=1$の整数解を求めよ。
【0から理解できる】一次不定方程式を解説しました!(数学A・整数)
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の不定方程式の整数解を求めよ。
(1)$5x-3y=1$
(2)$5x-3y=4$
この動画を見る
次の不定方程式の整数解を求めよ。
(1)$5x-3y=1$
(2)$5x-3y=4$
【数学A/整数】ユークリッドの互除法(文字式)
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$7n+6$と$2n+3$の最大公約数が$3$になるような$20$以下の自然数$n$をすべて求めよ。
この動画を見る
$7n+6$と$2n+3$の最大公約数が$3$になるような$20$以下の自然数$n$をすべて求めよ。
【数学A/整数】ユークリッドの互除法
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1207と994の最大公約数を、ユークリッドの互除法を用いて求めよ。
この動画を見る
1207と994の最大公約数を、ユークリッドの互除法を用いて求めよ。
不定方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
整数$(x,y)$を求めよ.
$x^2y+7x-2xy=15$
この動画を見る
整数$(x,y)$を求めよ.
$x^2y+7x-2xy=15$