数A
これ知ってる?
単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
正四面体の体積を一瞬で出す方法を解説していきます.
この動画を見る
正四面体の体積を一瞬で出す方法を解説していきます.
福田のおもしろ数学044〜みんな苦手なn進法〜10進法と5進法で同じ桁数になる数
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
10 進法で表しても、 5 進法で表しても、桁数が変わらない正の整数は何個あるか。
この動画を見る
10 進法で表しても、 5 進法で表しても、桁数が変わらない正の整数は何個あるか。
整数問題 2024福岡大附属大濠
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x-1が9の倍数であるとき$x^2$を3で割った余りは?
2024福岡大学附属大濠高等学校
この動画を見る
x-1が9の倍数であるとき$x^2$を3で割った余りは?
2024福岡大学附属大濠高等学校
二次方程式の解と確率 2024立教新座
単元:
#数Ⅰ#数A#2次関数#場合の数と確率#2次方程式と2次不等式#確率#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
さいころを3回続けて投げるとき、1回目、2回目、3回目に出た目の数をそれぞれa,b,cとする。
2次方程式$ax^2+bx+c=0$について2つの解が-2、-3となる確率を求めよ
2024立教新座高等学校
この動画を見る
さいころを3回続けて投げるとき、1回目、2回目、3回目に出た目の数をそれぞれa,b,cとする。
2次方程式$ax^2+bx+c=0$について2つの解が-2、-3となる確率を求めよ
2024立教新座高等学校
四角形の面積 立教新座2024
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
四角形の面積は?
*図は動画内参照
2024立教新座高等学校
この動画を見る
四角形の面積は?
*図は動画内参照
2024立教新座高等学校
福田のおもしろ数学039〜中学生でも理解できる〜素数がむすうに存在する証明その2フェルマー数
福田のおもしろ数学038〜中学生でも理解できる〜素数がむすうに存在する証明その1
円の半径=❓
これ一瞬で解けるの知ってる?
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
座標上の三角形の面積を一瞬で求める裏技に関して解説していきます。
この動画を見る
座標上の三角形の面積を一瞬で求める裏技に関して解説していきます。
福田のおもしろ数学034〜各面が合同な三角形でできた四面体の体積〜等面四面体
単元:
#数学(中学生)#中3数学#数A#図形の性質#三平方の定理#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
どの面も、5,6,7の長さの三角形でできている四面体の体積を求めよ
この動画を見る
どの面も、5,6,7の長さの三角形でできている四面体の体積を求めよ
分母に文字がある方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2+1+\frac{100}{x^2+1}=20$
この動画を見る
方程式を解け
$x^2+1+\frac{100}{x^2+1}=20$
福田のおもしろ数学033〜これが東大の入試問題だ!〜6個の円がおおう範囲の面積
単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
これが東大の入試問題だ!
半径1の円6個で覆う太線で囲まれた部分の面積を求めよ
図は動画内参照
東京大学過去問
この動画を見る
これが東大の入試問題だ!
半径1の円6個で覆う太線で囲まれた部分の面積を求めよ
図は動画内参照
東京大学過去問
福田のおもしろ数学032〜100個連続合成数が並ぶところを見つけよう
単元:
#数A#整数の性質#その他#その他#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
連続整数の中で100個連続合成数が並ぶところを見つけよ
※合成数とは、素数以外の整数
この動画を見る
連続整数の中で100個連続合成数が並ぶところを見つけよ
※合成数とは、素数以外の整数
福田のおもしろ数学031〜おつりなしでは買えない値段の種類〜6円玉と7円玉だけしかない国のお話
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#数A#整数の性質#ユークリッド互除法と不定方程式・N進法
指導講師:
福田次郎
問題文全文(内容文):
6円玉と7円玉しか使えないとき、おつり無しでは買えない値段は何種類あるか?
この動画を見る
6円玉と7円玉しか使えないとき、おつり無しでは買えない値段は何種類あるか?
7で割ったときのあまりを表せ。宮城県
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
aを29から34までの整数とする。
これを7で割ったときの余りをaの式で表せ。
宮城県
この動画を見る
aを29から34までの整数とする。
これを7で割ったときの余りをaの式で表せ。
宮城県
福田のおもしろ数学027〜1分でできたらマジ天才〜2直線のなす角の最大
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#方べきの定理と2つの円の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の図で、xの辺の長さを求めよ
図は動画内参照
この動画を見る
次の図で、xの辺の長さを求めよ
図は動画内参照
福田のおもしろ数学026〜1分でできたら天才〜半円に内接し互いに外接する3つの円
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
中学生でも解ける!?
図のように外接する円で、xの長さを求めよ
図は動画内参照
この動画を見る
中学生でも解ける!?
図のように外接する円で、xの長さを求めよ
図は動画内参照
整数問題 昭和学院秀英
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
n+7が11の倍数でn+11が7の倍数となる正の整数nの中で最小となるnの値を求めよ。
2024昭和学院秀英高等学校
この動画を見る
n+7が11の倍数でn+11が7の倍数となる正の整数nの中で最小となるnの値を求めよ。
2024昭和学院秀英高等学校
福田のおもしろ数学025〜10秒でできたら天才〜円に内接する二等辺三角形と線分の長さ
単元:
#数学(中学生)#中3数学#数A#図形の性質#円#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
小学生でも解ける!?
xを求めよ
図は動画内参照
この動画を見る
小学生でも解ける!?
xを求めよ
図は動画内参照
これ知ってた?
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
角度の二等分線の解き方の裏技動画に関して解説していきます。
この動画を見る
角度の二等分線の解き方の裏技動画に関して解説していきます。
福田のおもしろ数学024〜10秒でできたら天才〜三角形の中の線分の長さ
単元:
#数学(中学生)#中3数学#数A#図形の性質#相似な図形#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
小学生でも解ける!?
xを求めよ
図は動画内参照
この動画を見る
小学生でも解ける!?
xを求めよ
図は動画内参照
11の倍数
確率の求め方間違っていませんか?確率の前提の話 #shorts #確率 #数学
分母が文字入っている方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$\frac{1}{x} - \frac{1}{3x} = \frac{2}{3}$
この動画を見る
方程式を解け
$\frac{1}{x} - \frac{1}{3x} = \frac{2}{3}$
福田のおもしろ数学023〜10秒でできたら天才〜三角形と平行線と角の二等分線
単元:
#数A#図形の性質#平行と合同#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$BC /\!/ DE$ 、 CD は $\angle ACB$ の二等分線、 CF は $\angle ACG$ の二等分線、 CE=3 のとき、 DF=?
この動画を見る
$BC /\!/ DE$ 、 CD は $\angle ACB$ の二等分線、 CF は $\angle ACG$ の二等分線、 CE=3 のとき、 DF=?
整数問題だよ
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+n+144$
の下2桁が00になる3桁の自然数nの最大値最小値を求めよ.
この動画を見る
$n^2+n+144$
の下2桁が00になる3桁の自然数nの最大値最小値を求めよ.
整数問題だよ
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+n+144$の下2桁が○○となる3桁の自然数nの最小値と最大値を求めよ.
この動画を見る
$n^2+n+144$の下2桁が○○となる3桁の自然数nの最小値と最大値を求めよ.
整数問題だよ
2024年共通テスト徹底解説〜数学ⅠA第5問図形の性質〜福田の入試問題解説
単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
第5 問(1) $\triangle AQD$と直線CEに着目すると$\dfrac{QR}{RD}・\dfrac{DS}{SA}・\dfrac{ア}{CQ}=1$が成り立つのでQR:RD=イ:ウ となる。また、$\triangle AQD$と直線BEに着目するとQB:BD=エ:オ となる。
したがって、BQ:QR:RD=エ:イ:ウとなる個tが分かる。
(2)5点P,Q,R,S,Tが同一演習場にあるとし、AC=8とする。
(i)5点A,P,Q,S,Tに着目すると、AT:ST=1:2より、AT=$\sqrt{ カ }$となる。さらに5点D,Q,R,S,Tに着目すると$DR=4\sqrt{ 3 }$となることがわかる。
( 2 ) 3 点 A , B, C を通る円と点 D の位置関係を次の構想に基づいて調べよう。
構想:線分 AC と BD の交点 Q に着目し、 AQ $\cdot$ CQ と BQ $\cdot$ DQ の大小を比べる。
まず AQ $\cdot$ CQ = 5 $\cdot$ 3 = 15 かっ BQ $\cdot$ DQ =キクであるから
AQ$\cdot$CQ ケ BQ$\cdot$DQ $\cdots$①
が成り立つ。また、3点A,B,Cを通る\と直線BDとの交点のうち、Bと異なる点をXとするとAQ$\cdot$CQ ケ BQ$\cdot$XQ $\cdots$②
①②の左辺は同じなので①②の右辺と比べることによりXQ サ DQが得られる。したがって点DはA,B,Cを通る円の シ にある。
(2)3 点 C , D , E を通る円と 2 点 A , B の位置関係について調べよう。この星形の図形において、さらにCR = RS = SE = 3 となることがわかる。したがって、点 A は 3 点 C, E, D を通る円の ス にあり、点 B は 3 点 C, E, D を通る円の セ にある。
2024共通テスト過去問
この動画を見る
第5 問(1) $\triangle AQD$と直線CEに着目すると$\dfrac{QR}{RD}・\dfrac{DS}{SA}・\dfrac{ア}{CQ}=1$が成り立つのでQR:RD=イ:ウ となる。また、$\triangle AQD$と直線BEに着目するとQB:BD=エ:オ となる。
したがって、BQ:QR:RD=エ:イ:ウとなる個tが分かる。
(2)5点P,Q,R,S,Tが同一演習場にあるとし、AC=8とする。
(i)5点A,P,Q,S,Tに着目すると、AT:ST=1:2より、AT=$\sqrt{ カ }$となる。さらに5点D,Q,R,S,Tに着目すると$DR=4\sqrt{ 3 }$となることがわかる。
( 2 ) 3 点 A , B, C を通る円と点 D の位置関係を次の構想に基づいて調べよう。
構想:線分 AC と BD の交点 Q に着目し、 AQ $\cdot$ CQ と BQ $\cdot$ DQ の大小を比べる。
まず AQ $\cdot$ CQ = 5 $\cdot$ 3 = 15 かっ BQ $\cdot$ DQ =キクであるから
AQ$\cdot$CQ ケ BQ$\cdot$DQ $\cdots$①
が成り立つ。また、3点A,B,Cを通る\と直線BDとの交点のうち、Bと異なる点をXとするとAQ$\cdot$CQ ケ BQ$\cdot$XQ $\cdots$②
①②の左辺は同じなので①②の右辺と比べることによりXQ サ DQが得られる。したがって点DはA,B,Cを通る円の シ にある。
(2)3 点 C , D , E を通る円と 2 点 A , B の位置関係について調べよう。この星形の図形において、さらにCR = RS = SE = 3 となることがわかる。したがって、点 A は 3 点 C, E, D を通る円の ス にあり、点 B は 3 点 C, E, D を通る円の セ にある。
2024共通テスト過去問