図形と方程式 - 質問解決D.B.(データベース) - Page 8

図形と方程式

福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 水平な平面上の異なる2点A(0,1),Q(x,y)にそれぞれ高さh \gt 0,g \gt 0の塔が\\
平面に垂直に立っている。この平面上にあってA,Qとは異なる点Pから2つの\\
塔の先端を見上げる角度が等しくなる状況を考える。ただし、h ≠ gとする。\\
\\
(1)点Qの座標が(T,1) (ただしT \gt 0)のとき、2つの塔を見上げる角度が等しく\\
なるような点Pは、中心の座標が(\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ })、半径が\boxed{\ \ (う)\ \ }の円周上にある。\\
\\
(2)2つの塔を見上げる角度が等しくなるような点Pのうち、y軸上にあるものが\\
ただ1つあるとする。このときhとgの間には不等式\boxed{\ \ (え)\ \ }が成り立ち、\\
点Q(x,y)は2直線y=\boxed{\ \ (お)\ \ }, y=\boxed{\ \ (か)\ \ }のいずれかの上にある。\\
\\
(3)2つの塔を見上げる角度が等しくなるような点Pのうち、x軸上にあるものが\\
ただ1つであるとする。このとき点Q(x,y)は方程式\\
\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+\boxed{\ \ (け)\ \ }y^2+\boxed{\ \ (こ)\ \ }y=1\\
で表される2次曲線上Cの上にある。Cが楕円であるのはhとgの間に不等式\boxed{\ \ (さ)\ \ }\\
が成り立つときであり、そのときCの2つの焦点の座標は(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ }),\\
(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })である。\boxed{\ \ (さ)\ \ }が成り立たないときCは双曲線となり、\\
その2つの焦点の座標は(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ }),(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })である。\\
さらに\frac{h}{g}=\boxed{\ \ (と)\ \ }のときCは直角双曲線となる。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 

福田のわかった数学〜高校2年生034〜軌跡(1)アポロニウスの円

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(1) アポロ二ウスの円\\
点O(0,0)に高さ6の、A(10,0)に高さ4\\
の塔がxy平面に垂直に立っている。\\
xy平面上で2本の塔を見上げる角が\\
等しい点Pの軌跡を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生033〜知って得する平行・垂直条件(2)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 知って得する平行・垂直条件(2)\\
直線l:ax+by+c=0\\
とl上にない点A(x_0,y_0)がある。\\
(1)Aを通りlに平行な直線を求めよ。\\
(2)Aを通りlに垂直な直線を求めよ。\\
\end{eqnarray}
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第4問〜領域における最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 不等式(x-6)^2+(y-4)^2 \leqq 4 の表す領域を点P(x,y)が動くものとする。\\
このとき、x^2+y^2の最大値は\boxed{\ \ タ\ \ }+\boxed{\ \ チ\ \ }\sqrt{\boxed{\ \ ツ\ \ }}、\frac{y}{x}の最小値は\frac{\boxed{\ \ テ\ \ }-\sqrt{\boxed{\ \ ト\ \ }}}{\boxed{\ \ ナ\ \ }}、\\
x+yの最大値は\boxed{\ \ ニ\ \ }+\boxed{\ \ ヌ\ \ }\sqrt{\boxed{\ \ ネ\ \ }} となる。
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 

福田のわかった数学〜高校2年生032〜知って得する平行・垂直条件(1)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 知って得する平行・垂直条件(1)\\
2直線\\
ax-y-a+1=0 \ldots①\\
(a+2)x-ay+2a=0 \ldots②\\
が次の条件を満たすとき、定数aの値を求めよ。\\
\\
(1)平行である  (2)垂直である
\end{eqnarray}
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(1)〜指数対数不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)次の連立不等式の表す領域の面積は\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }} である。\\
\left\{\begin{array}{1}
\displaystyle\log_4y+\log_{\frac{1}{4}}(x-2)+\log_4\frac{1}{8-x} \geqq -1\\
2^{y+x^2+11} \leqq 1024^{x-1}\\
\end{array}\right.
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 

福田のわかった数学〜高校2年生031〜円と放物線の位置関係(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(3)\\
\left\{\begin{array}{1}
円\ x^2+(y-a)^2=r^2 (a \gt 0,r \gt 0) \ldots①\\
放物線\ y=\displaystyle\frac{1}{2}x^2 \ldots②\\
\end{array}\right.\\
が次の条件を満たすときaの範囲、rをaで表せ。\\
\\
(1)原点Oで接し、かつ他に共有点を持たない。\\
(2)異なる2点で接する。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生030〜円と放物線の位置関係(2)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(2)\\
\\
\left\{\begin{array}{1}
円\ x^2+(y-r)^2=r^2 (r \gt 0)\\
放物線\ y=x^2
\end{array}\right.\\
\\
の共有点が原点のみとなるrの範囲
\end{eqnarray}
この動画を見る 

【数Ⅱ】図形と方程式:5分で学ぶファクシミリ論法

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #チャート式#黄チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ファクシミリ論法を5分で解説!
この動画を見る 

福田のわかった数学〜高校2年生029〜円と放物線の位置関係(1)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(1)\\
\left\{\begin{array}{1}
円\ x^2+y^2=r^2 (r \gt 0)\\
放物線\ y=x^2-1
\end{array}\right.\\
\\
の共有点の個数を調べよ。
\end{eqnarray}
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第3問〜グラフの通過範囲とx固定法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 実数aが0 \leqq a \leqq 1を満たしながら動くとき、座標平面において3次関数\\
y=x^3-2ax+a^2 (0 \leqq x \leqq 1)のグラフが通過する領域をAとする。このとき、\\
次の問いに答えよ。\\
(1)直線x=\frac{1}{2}とAの共通部分に属する点のy座標の取り得る範囲を求めよ。\\
(2)Aに属する点のy座標の最小値を求めよ。\\
(3)Aの面積を求めよ。
\end{eqnarray}

2021早稲田大学教育学部過去問
この動画を見る 

福田のわかった数学〜高校2年生028〜定点通過(直線群、円群)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
放物線y=x^2+5x-4 と\\
y=-x^2+ax+2 の2つの交点を\\
通る直線をlとする。lが点(2,3)を\\
通るときaの値とlの方程式を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生027〜定点通過(直線群、円群)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
2つの円\ x^2+y^2-4x-2y=0 \ldots①\\
x^2+y^2-x+y-6=0 \ldots②\\
の交点をA,Bとするとき、次を求めよ。\\
(1)直線AB  (2)A,B,(6,0)を通る円
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生026〜円が直線から切り取る弦の長さ

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円が直線から切り取る弦の長さ
円$x^2+y^2=13$ が直線
$kx+2y-4k=0$
から切り取る弦の長さが$2\sqrt5$であるとき、
定数kの値を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生025〜2つの円の位置関係

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2つの円の位置関係
円$C_1:x^2+y^2=1$
円$C_2:x^2+y^2-6x+8y+k=0$
が接するとき、定数$k$の値と接点の座標を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生024〜2つの円の共通接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2つの円の共通接線

円$C_1:(x-1)^2+y^2=1$
円$C_2:(x-4)^2+y^2=4$

の共通接線の方程式を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生023〜円の外部から引いた接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円と接線
点$A(2,4)$から
円$C:(x+2)^2+(y-2)^2=10$
へ引いた接線の方程式を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生022〜円の外部から引いた接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$C:x^2+y^2=4$ の接線で$(2,3)$を通るものと
そのときの接点を次の3通りの方法で求めよ。
(1)接線の公式$x_1x+y_1=r^2$ を利用
(2)点と直線の距離の公式を利用
(3)判別式を利用
この動画を見る 

福田のわかった数学〜高校2年生021〜円の接線と極線に関するまとめ

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$C:x^2+y^2=r^2$と点$P(x_1,y_1)$に対して
$x_1x+y_1y=r^2$
は次のそれぞれの場合にどんな直線か。
(1)点$P$が$C$上 (2)点$P$が$C$の外部
(3)点$P$が$C$の内部、ただし原点を除く
この動画を見る 

数学「大学入試良問集」【11−2 交点を通過する円】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#都立科学技術大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
直線$l:(1-k)x+(1+k)y+2k-14=0$は定数$k$の値によらず定点$A$を通る。
このとき、次の各問いに答えよ。
(1)
定点$A$の座標を求めよ。

(2)
$xy$平面上に点$B$をとる。
原点$O$と2点$A,B$を頂点とする三角形$OAB$が正三角形になるとき、正三角形$OAB$の外接円の中心の座標を求めよ。

(3)
直線$l$と円$C:x^2+y^2=16$の2つの交点を通る円のうちで、2点$`(-4,0),Q(2,0)$を通る円の方程式を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生020〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#恒等式・等式・不等式の証明#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$x^2+y^2=r^2$と円の内部の点$(a,b)$に対して
$ax+by=r^2$
はどんな直線を表すか説明せよ。
ただし、$(a,b)≠(0,0)$とする。
この動画を見る 

数学「大学入試良問集」【11−1 円と直線の位置関係】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
平面上に、原点$O$を中心とする半径1の円$C$と、点$(3,0)$を通る傾き$m$の直線$l$がある。
(1)$l$と$c$が異なる2点$A,B$で交わるとき、$m$の値の範囲を求めよ。
(2)三角形$OAB$の面積が$\displaystyle \frac{1}{2}$のときの$m$を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生019〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$x^2+y^2=r^2$ に円外の点$(a,b)$から
2本の接線を引く。
このとき2接点$P,Q$を結ぶ直線は
$ax+by=r^2$
となることを証明せよ。
この動画を見る 

福田のわかった数学〜高校2年生018〜円の接線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円 $\ x^2 + y^2 = r^2$ 上の点 $(a,b)$における接線は $ax +by=r^2 $
となることを証明せよ。
この動画を見る 

数学「大学入試良問集」【9−1 指数関数と解の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対して、$t=2^x+2^{-x},y=4^x-6・2^x-6・2^{-x}+4^{-x}$とおく。
次の問いに答えよ。
(1)$x$が実数全体を動くとき、$t$の最小値を求めよ。
(2)$y$を$t$の式で表せ。
(3)$x$が実数全体を動くとき、$y$の最小値を求めよ。
(4)$a$を実数とするとき、$y=a$となるような$x$の個数を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生017〜折れ線の長さの最小値2

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
原点中心,半径$r$の円$C$上に2点$A,B$を、
$\theta=\angle AOB \lt \displaystyle \frac{\pi}{2}$となるようにとり、劣弧$AB$
上に点$R$,線分$OA,OB$上にそれぞれ$P,Q$をとる。
$PQ+QR+RP$の最小値を$r,\theta$で表せ。
この動画を見る 

福田のわかった数学〜高校2年生016〜折れ線の長さの最小値

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
2点$A(5,1),B(2,8)$と$x$軸上、$y$軸上に
それぞれ2点$P,Q$がある。
$AP+PQ+QB$を最小にする点$P,Q$は?
この動画を見る 

数学「大学入試良問集」【7−6 正方形と長方形の共有面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上に4点$O(0,0),A(2,0),B(2,1),C(0,1)$がある。
実数$a$に対して4点$P(a+1,a),Q(a,a+1),R(a-1,a),S(a,a-1)$をとる。
このとき、次の問いに答えよ。
(1)
長方形$QABC$と正方形$PQRS$が共有点をもつような$a$の範囲を求めよ。

(2)
長方形$OABC$と正方形$PQRS$の共通部分の面積が最大となる$a$の値と、そのときの共通部分の面積を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生015〜直線の方程式と内心

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
$y=-\displaystyle \frac{3}{4}x+9, y=\displaystyle \frac{4}{3}x+9, y=\displaystyle \frac{3}{4}x-5$
で囲まれた三角形の内心の座標を求めよ。
この動画を見る 

数学「大学入試良問集」【7−5 実数解と領域図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学#大阪市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$a,b$に対し、$x$についての2次方程式
$x^2-2ax+b=0$
は、$0 \leqq x \leqq 1$の範囲に少なくとも1つの実数解をもつとする。
このとき、$a,b$が満たす条件を求め、点$(a,b)$の存在する範囲を図示せよ。
この動画を見る 
PAGE TOP