微分法と積分法

東大 大島さんと数学 球の体積

福田の数学〜中央大学2021年理工学部第1問〜斜回転

単元:
#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$放物線$C:y=x^2$上の点$(a,\ a^2)$ $(a \gt 0)$における法線lの方程式を$y=f(x)$
とおくと、$f(x)=\boxed{\ \ ア\ \ }$となる。またCとlの交点のうちPと異なる方の点Qを
求めると、$Q(\boxed{\ \ イ\ \ },\ \boxed{\ \ イ\ \ }^2)$となる。以下、Cとlで囲まれた部分をDとし、
Dをlの周りに1回転して得られる回転体の体積$V(a)$を求める。Dに含まれるl上
の点を$R(t,\ f(t))$ $(\boxed{\ \ イ\ \ }$ $\leqq t \leqq a)$とおく。Rを通りlに垂直な直線は
$y=2a(x-t)+f(t)$で与えられる。この直線と$y=x^2$の2つの交点のうち
Dに含まれる方の点Sのx座標は$x=a-\boxed{\ \ ウ\ \ }\sqrt{a-t}$ となる。このとき
線分RSの長さ$r=g(t)$は$g(t)=\boxed{\ \ エ\ \ }(t-a+\boxed{\ \ ウ\ \ }\sqrt{a-t})$となる。
線分QRの長さ$s=h(t)$は$h(t)=\boxed{\ \ オ\ \ }(t-\boxed{\ \ イ\ \ })$で与えられるので、
$V(a)=\pi\int_0^{h(a)}r^2ds=\pi\int_{\boxed{イ}}^a\left\{g(t)\right\}^2h'(t)dt$
$=\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_{\boxed{イ}}^a(a-t)(-\sqrt{a-t}+\boxed{\ \ ウ\ \ })^2dt$
となる。ここで$u=\sqrt{a-t}$とおいて置換積分を行えば
$V(a)=2\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_0^{\boxed{ウ}}\left\{u^5-2\boxed{\ \ ウ\ \ }u^4+(\boxed{\ \ ウ\ \ })^2u^3\right\}du=\boxed{\ \ カ\ \ }$
が求まる。さらに、$a \gt 0$の範囲で$a$を動かすとき、$\lim_{a \to +0}V(a)=\lim_{a \to \infty}V(a)=\infty$
であり、$V(a)$を最小にするaの値は$a=\boxed{\ \ キ\ \ }$である。
$\boxed{\ \ ア\ \ }$の解答群
ⓐ$-\frac{2}{a}(x-a)+a^2$ ⓑ$-\frac{1}{a}(x-a)+a^2$ ⓒ$-\frac{1}{2a}(x-a)+a^2$ ⓓ$-2a(x-a)+a^2$
$\boxed{\ \ イ\ \ }~\ \boxed{\ \ オ\ \ }$の解答群
ⓐ$-\frac{a^2-1}{a}$ ⓑ$-\frac{2a^2-1}{2a}$ ⓒ$-\frac{a^2+1}{a}$ ⓓ$-\frac{2a^2+1}{2a}$
ⓔ$\frac{\sqrt{a^2+4}}{2}$ ⓕ$\sqrt{a^2+1}$ ⓖ$\sqrt{4a^2+1}$ ⓗ$2a$
ⓘ$\frac{\sqrt{4a^2+1}}{2a}$ ⓙ$\frac{\sqrt{a^2+4}}{a}$ ⓚ$\frac{\sqrt{a^2+1}}{a}$ ⓛ$\frac{\sqrt{a^2+1}}{2a}$
ⓜ$\sqrt{\frac{2a^2+1}{2a}}$ ⓝ$\sqrt{\frac{4a^2+1}{2a}}$ ⓞ$\sqrt{\frac{2a^2+1}{a}}$ ⓟ$\sqrt{\frac{4a^2+1}{a}}$
$\boxed{\ \ カ\ \ }$の解答群
$ⓐ\frac{(2a^2+1)^3(a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓑ\frac{(2a^2+1)^{\frac{9}{2}}}{120a^4}\ \pi ⓒ\frac{(2a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi$
$ⓓ\frac{(2a^2+1)^3(4a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓔ\frac{(4a^2+1)^{\frac{9}{2}}}{480a^4}\ \pi ⓕ\frac{(4a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi$
$ⓖ\frac{(a^2+1)^2(4a^2+1)^2}{120a^{\frac{7}{2}}}\ \pi ⓗ\frac{(4a^2+1)^4}{480\sqrt2a^{\frac{7}{2}}}\ \pi ⓘ\frac{(4a^2+1)^4}{120\sqrt2a^{\frac{7}{2}}}\ \pi$
$\boxed{\ \ キ\ \ }$の解答群
$ⓐ\frac{1}{\sqrt5} ⓑ\frac{1}{\sqrt2} ⓒ1 ⓓ\sqrt2 ⓔ\frac{2}{\sqrt5} ⓕ4$
2021中央大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$放物線$C:y=x^2$上の点$(a,\ a^2)$ $(a \gt 0)$における法線lの方程式を$y=f(x)$
とおくと、$f(x)=\boxed{\ \ ア\ \ }$となる。またCとlの交点のうちPと異なる方の点Qを
求めると、$Q(\boxed{\ \ イ\ \ },\ \boxed{\ \ イ\ \ }^2)$となる。以下、Cとlで囲まれた部分をDとし、
Dをlの周りに1回転して得られる回転体の体積$V(a)$を求める。Dに含まれるl上
の点を$R(t,\ f(t))$ $(\boxed{\ \ イ\ \ }$ $\leqq t \leqq a)$とおく。Rを通りlに垂直な直線は
$y=2a(x-t)+f(t)$で与えられる。この直線と$y=x^2$の2つの交点のうち
Dに含まれる方の点Sのx座標は$x=a-\boxed{\ \ ウ\ \ }\sqrt{a-t}$ となる。このとき
線分RSの長さ$r=g(t)$は$g(t)=\boxed{\ \ エ\ \ }(t-a+\boxed{\ \ ウ\ \ }\sqrt{a-t})$となる。
線分QRの長さ$s=h(t)$は$h(t)=\boxed{\ \ オ\ \ }(t-\boxed{\ \ イ\ \ })$で与えられるので、
$V(a)=\pi\int_0^{h(a)}r^2ds=\pi\int_{\boxed{イ}}^a\left\{g(t)\right\}^2h'(t)dt$
$=\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_{\boxed{イ}}^a(a-t)(-\sqrt{a-t}+\boxed{\ \ ウ\ \ })^2dt$
となる。ここで$u=\sqrt{a-t}$とおいて置換積分を行えば
$V(a)=2\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_0^{\boxed{ウ}}\left\{u^5-2\boxed{\ \ ウ\ \ }u^4+(\boxed{\ \ ウ\ \ })^2u^3\right\}du=\boxed{\ \ カ\ \ }$
が求まる。さらに、$a \gt 0$の範囲で$a$を動かすとき、$\lim_{a \to +0}V(a)=\lim_{a \to \infty}V(a)=\infty$
であり、$V(a)$を最小にするaの値は$a=\boxed{\ \ キ\ \ }$である。
$\boxed{\ \ ア\ \ }$の解答群
ⓐ$-\frac{2}{a}(x-a)+a^2$ ⓑ$-\frac{1}{a}(x-a)+a^2$ ⓒ$-\frac{1}{2a}(x-a)+a^2$ ⓓ$-2a(x-a)+a^2$
$\boxed{\ \ イ\ \ }~\ \boxed{\ \ オ\ \ }$の解答群
ⓐ$-\frac{a^2-1}{a}$ ⓑ$-\frac{2a^2-1}{2a}$ ⓒ$-\frac{a^2+1}{a}$ ⓓ$-\frac{2a^2+1}{2a}$
ⓔ$\frac{\sqrt{a^2+4}}{2}$ ⓕ$\sqrt{a^2+1}$ ⓖ$\sqrt{4a^2+1}$ ⓗ$2a$
ⓘ$\frac{\sqrt{4a^2+1}}{2a}$ ⓙ$\frac{\sqrt{a^2+4}}{a}$ ⓚ$\frac{\sqrt{a^2+1}}{a}$ ⓛ$\frac{\sqrt{a^2+1}}{2a}$
ⓜ$\sqrt{\frac{2a^2+1}{2a}}$ ⓝ$\sqrt{\frac{4a^2+1}{2a}}$ ⓞ$\sqrt{\frac{2a^2+1}{a}}$ ⓟ$\sqrt{\frac{4a^2+1}{a}}$
$\boxed{\ \ カ\ \ }$の解答群
$ⓐ\frac{(2a^2+1)^3(a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓑ\frac{(2a^2+1)^{\frac{9}{2}}}{120a^4}\ \pi ⓒ\frac{(2a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi$
$ⓓ\frac{(2a^2+1)^3(4a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓔ\frac{(4a^2+1)^{\frac{9}{2}}}{480a^4}\ \pi ⓕ\frac{(4a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi$
$ⓖ\frac{(a^2+1)^2(4a^2+1)^2}{120a^{\frac{7}{2}}}\ \pi ⓗ\frac{(4a^2+1)^4}{480\sqrt2a^{\frac{7}{2}}}\ \pi ⓘ\frac{(4a^2+1)^4}{120\sqrt2a^{\frac{7}{2}}}\ \pi$
$\boxed{\ \ キ\ \ }$の解答群
$ⓐ\frac{1}{\sqrt5} ⓑ\frac{1}{\sqrt2} ⓒ1 ⓓ\sqrt2 ⓔ\frac{2}{\sqrt5} ⓕ4$
2021中央大学理工学部過去問
福田の数学〜慶應義塾大学2021年看護医療学部第5問〜定積分で表された関数

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$dを実数の定数、$f(t)$を2次関数として、次の関数F(x)を考える。
$F(x)=\int_d^xf(t)dt$
(1)$F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }$である。
(2)$F(x)$が$x=1$で極大値5、$x=2$で極小値4をとるとき、
$f(t)$およびdを求めなさい。
2021慶應義塾大学看護医療学部過去問
この動画を見る
${\Large\boxed{5}}$dを実数の定数、$f(t)$を2次関数として、次の関数F(x)を考える。
$F(x)=\int_d^xf(t)dt$
(1)$F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }$である。
(2)$F(x)$が$x=1$で極大値5、$x=2$で極小値4をとるとき、
$f(t)$およびdを求めなさい。
2021慶應義塾大学看護医療学部過去問
積分基礎 西南学院大

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^2+1$と$g(n)=-x^2+6x-5$と$f(x),g(n)$の共通接線で囲まれる面積を求めよ.
2021西南学院大過去問
この動画を見る
$f(x)=-x^2+1$と$g(n)=-x^2+6x-5$と$f(x),g(n)$の共通接線で囲まれる面積を求めよ.
2021西南学院大過去問
【基本から解説】数Ⅲ・微分 導関数の定義に従って微分する問題

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を、導関数の定義に従って微分せよ。
(1)
$y=\displaystyle \frac{1}{x+2}$
(2)
$y=\sqrt{ 3x }$
この動画を見る
次の関数を、導関数の定義に従って微分せよ。
(1)
$y=\displaystyle \frac{1}{x+2}$
(2)
$y=\sqrt{ 3x }$
福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xy平面上に、xの関数
$f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2$
のグラフ$y=f(x)$がある。$y=f(x)$が任意のaに対して
通る定点をP、点Pにおける接線が$y=f(x)$と交わる点をQとおく。
(1)点Pの座標は$\boxed{\ \ ツ\ \ }$であり、点Pにおける接線の方程式は$y=\boxed{\ \ テ\ \ }$である。
(2)$a=5$のとき、$y=f(x)$上の点における接線は、$x=\boxed{\ \ ト\ \ }$において傾きが
最小になる。
(3)$x=\boxed{\ \ ト\ \ }$において$f(x)$が極値をとるとき、$a=\boxed{\ \ ナ\ \ }$であり、
点$(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))$を$S$とおくと、三角形SPQの面積は$\boxed{\ \ ニ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{3}}$xy平面上に、xの関数
$f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2$
のグラフ$y=f(x)$がある。$y=f(x)$が任意のaに対して
通る定点をP、点Pにおける接線が$y=f(x)$と交わる点をQとおく。
(1)点Pの座標は$\boxed{\ \ ツ\ \ }$であり、点Pにおける接線の方程式は$y=\boxed{\ \ テ\ \ }$である。
(2)$a=5$のとき、$y=f(x)$上の点における接線は、$x=\boxed{\ \ ト\ \ }$において傾きが
最小になる。
(3)$x=\boxed{\ \ ト\ \ }$において$f(x)$が極値をとるとき、$a=\boxed{\ \ ナ\ \ }$であり、
点$(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))$を$S$とおくと、三角形SPQの面積は$\boxed{\ \ ニ\ \ }$である。
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(2)〜解の差が1の2次方程式

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xの関数$f(x)=x^2+ax+b$がある。方程式$f(x)=0$の2つの実数解の差が
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が$\frac{13}{2}$であるとき、
aの値は$\boxed{\ \ イ\ \ }$、bの値は$\boxed{\ \ ウ\ \ }$である。
2021慶應義塾大学薬学部過去問
この動画を見る
${\Large\boxed{1}}$(2)xの関数$f(x)=x^2+ax+b$がある。方程式$f(x)=0$の2つの実数解の差が
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が$\frac{13}{2}$であるとき、
aの値は$\boxed{\ \ イ\ \ }$、bの値は$\boxed{\ \ ウ\ \ }$である。
2021慶應義塾大学薬学部過去問
積分の基本

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-7x^2+14x-8$と$x$軸とで囲まれる2つの部分の面積の和を求めよ.
この動画を見る
$f(x)=x^3-7x^2+14x-8$と$x$軸とで囲まれる2つの部分の面積の和を求めよ.
福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)
(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。
(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。
2021慶應義塾大学総合政策学部過去問
この動画を見る
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)
(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。
(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。
2021慶應義塾大学総合政策学部過去問
微分の基本 一歩先を行く数2

【数Ⅱ】微分法と積分法:2021年高3第1回数台全国模試 (文理共通)

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを実数とし、xの4次関数f(x)を$f(x)=3x^4-4(a+2)x^3+12ax^2+1$とする。次の問に答 えよ。
(1)f(x)が極大値をもつようなaの値の範囲を求めよ。
(2)(1)で求めた範囲 をaが動くとき、曲線y=f(x)において、f(x)が極大となる点の軌跡を求めよ。
この動画を見る
aを実数とし、xの4次関数f(x)を$f(x)=3x^4-4(a+2)x^3+12ax^2+1$とする。次の問に答 えよ。
(1)f(x)が極大値をもつようなaの値の範囲を求めよ。
(2)(1)で求めた範囲 をaが動くとき、曲線y=f(x)において、f(x)が極大となる点の軌跡を求めよ。
福田の数学〜慶應義塾大学2021年経済学部第6問〜3次関数の接線と面積

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$
F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、$y=F(x)$で
定まる曲線をCとする。$\alpha \lt \beta$を満たす実数$\alpha,\ \beta$に対して、C上の点A$(\alpha,F(\alpha))$
におけるCの接線を$L_{\alpha}$とするとき、Cと$L_{\alpha}$とのA以外の共有点が$B(\beta,F(\beta))$
であるとする。さらに、BにおけるCの接線を$L_{\beta}$とのB以外の共有点を$(\gamma,F(\gamma))$
とする。
(1)接線$L_{\alpha}$の方程式を$y=l_{\alpha}(x)$とし、$G(x)=F(x)-l_{\alpha}(x)$とおく。さらに、
曲線$y=G(x)$上の点$(\beta,G(\beta))$における接線の方程式を$y=m(x)$とする。$G(x)$
および$m(x)$を、それぞれ$\alpha,\beta$を用いて因数分解された形に表せ。必要ならば
xの整式で表される関数$p(x),q(x)$とそれらの導関数に関して成り立つ公式
$\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)$
を用いてもよい。
(2)接線$L_{\beta}$の方程式は(1)で定めた$l_{\alpha}(x),\ m(x)$を用いて、$y=l_{\alpha}(x)+ m(x)$で
与えられることを示せ。さらに、$\gamma$を$\alpha,\beta$を用いて表せ。
(3)曲線Cおよび$L_{\beta}$で囲まれた図形の面積を$S$とする。$S$を$\alpha,\beta$を用いて表せ。
さらに$\alpha,\beta$が$-1 \lt \alpha \lt 0$かつ$1 \lt \beta \lt 2$を満たすとき、$S$の取り得る値の
範囲を求めよ。必要ならば$r \lt s$を満たす実数$r,s$に対して成り立つ公式
$\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4$
を用いてもよい。
2021慶應義塾大学経済学部過去問
この動画を見る
${\Large\boxed{6}}$
F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、$y=F(x)$で
定まる曲線をCとする。$\alpha \lt \beta$を満たす実数$\alpha,\ \beta$に対して、C上の点A$(\alpha,F(\alpha))$
におけるCの接線を$L_{\alpha}$とするとき、Cと$L_{\alpha}$とのA以外の共有点が$B(\beta,F(\beta))$
であるとする。さらに、BにおけるCの接線を$L_{\beta}$とのB以外の共有点を$(\gamma,F(\gamma))$
とする。
(1)接線$L_{\alpha}$の方程式を$y=l_{\alpha}(x)$とし、$G(x)=F(x)-l_{\alpha}(x)$とおく。さらに、
曲線$y=G(x)$上の点$(\beta,G(\beta))$における接線の方程式を$y=m(x)$とする。$G(x)$
および$m(x)$を、それぞれ$\alpha,\beta$を用いて因数分解された形に表せ。必要ならば
xの整式で表される関数$p(x),q(x)$とそれらの導関数に関して成り立つ公式
$\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)$
を用いてもよい。
(2)接線$L_{\beta}$の方程式は(1)で定めた$l_{\alpha}(x),\ m(x)$を用いて、$y=l_{\alpha}(x)+ m(x)$で
与えられることを示せ。さらに、$\gamma$を$\alpha,\beta$を用いて表せ。
(3)曲線Cおよび$L_{\beta}$で囲まれた図形の面積を$S$とする。$S$を$\alpha,\beta$を用いて表せ。
さらに$\alpha,\beta$が$-1 \lt \alpha \lt 0$かつ$1 \lt \beta \lt 2$を満たすとき、$S$の取り得る値の
範囲を求めよ。必要ならば$r \lt s$を満たす実数$r,s$に対して成り立つ公式
$\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4$
を用いてもよい。
2021慶應義塾大学経済学部過去問
言語学オタクに数学を教えるよ!その2 ネイピア数とは

ゆる言語学者に数学を教えるよ!その1sinの微分

共有点の個数

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
aは定数。放物線$y=x^2+a$と$y=4|x-1|-3$のグラフとの共有点の個数を求めよ。
この動画を見る
aは定数。放物線$y=x^2+a$と$y=4|x-1|-3$のグラフとの共有点の個数を求めよ。
【数Ⅱ】微分法と積分法:一橋大学1995年 直線の通過領域

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
tが$0\leqq t\leqq1$の範囲を動くとき、直線$y=3t^2x-2t^3$の通り得る点の存在範囲を求め、そ れを図示しよう。
この動画を見る
tが$0\leqq t\leqq1$の範囲を動くとき、直線$y=3t^2x-2t^3$の通り得る点の存在範囲を求め、そ れを図示しよう。
【数Ⅱ】微分法と積分法:入試頻出!領域の図示 3本の接線が引けるための条件

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
接線の本数:曲線$f(x)=-x^3+3x^2$の接線のうち、点(2,a)を通るものの本数は、 定数aの値によってどのように変わるか調べよ。
この動画を見る
接線の本数:曲線$f(x)=-x^3+3x^2$の接線のうち、点(2,a)を通るものの本数は、 定数aの値によってどのように変わるか調べよ。
【数Ⅱ】 微分法と積分法:2021年高3第1回K塾記述模試

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)を次の式で定める。ただし、kは正の定数である。$f(x)=kx^3-4x^2+x+k^2$ 原点をOとする座標平面上において、曲線$C:y=f(x)$とy軸の交点をAとし、Aにお けるCの接線と垂直でAを通る直線をlとする。
(1)lの方程式を求めよ。
(2)Cとlが A以外に2点で交わるとする。このとき、kの値の範囲を求めよ。
(3)(2)のとき、CとlのA以外の2交点をP、Qとし、三角形OPQの面積をSとする。kが(2)で求めた範 囲を変化するとき、Sの最大値を求めよ。
この動画を見る
関数f(x)を次の式で定める。ただし、kは正の定数である。$f(x)=kx^3-4x^2+x+k^2$ 原点をOとする座標平面上において、曲線$C:y=f(x)$とy軸の交点をAとし、Aにお けるCの接線と垂直でAを通る直線をlとする。
(1)lの方程式を求めよ。
(2)Cとlが A以外に2点で交わるとする。このとき、kの値の範囲を求めよ。
(3)(2)のとき、CとlのA以外の2交点をP、Qとし、三角形OPQの面積をSとする。kが(2)で求めた範 囲を変化するとき、Sの最大値を求めよ。
琉球大 積分 計算の工夫

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3-3x^2-6x+7$
$f(x)$は$\alpha,\beta(\alpha \lt \beta)$で極値をもつ.
$f(x)$と$x$軸で囲まれた領域で$\alpha\leqq x\leqq \beta$の部分の面積を求めよ.
2021琉球大過去問
この動画を見る
$f(x)=2x^3-3x^2-6x+7$
$f(x)$は$\alpha,\beta(\alpha \lt \beta)$で極値をもつ.
$f(x)$と$x$軸で囲まれた領域で$\alpha\leqq x\leqq \beta$の部分の面積を求めよ.
2021琉球大過去問
極限 中国人民大学

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{x\to \infty}\left(\dfrac{x^2}{x^2-1}\right)^x$
中国人民大学過去問
この動画を見る
$\displaystyle \lim_{x\to \infty}\left(\dfrac{x^2}{x^2-1}\right)^x$
中国人民大学過去問
数学「大学入試良問集」【12−6 放物線と接線で囲まれた面積】を宇宙一わかりやすく

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京都立大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$y=x^2$のグラフを$r$とする。
$b \lt a^2$をみたす点$P(a,b)$から$r$へ接線を2本引き、接点を$A,B$とする。
$r$と2本の線分$PA,PB$で囲まれた図形の面積が$\displaystyle \frac{2}{3}$になるような点$P$の軌跡を求めよ。
この動画を見る
$y=x^2$のグラフを$r$とする。
$b \lt a^2$をみたす点$P(a,b)$から$r$へ接線を2本引き、接点を$A,B$とする。
$r$と2本の線分$PA,PB$で囲まれた図形の面積が$\displaystyle \frac{2}{3}$になるような点$P$の軌跡を求めよ。
数学「大学入試良問集」【12−5 3次関数と接線】を宇宙一わかりやすく

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3次曲線$C:y=x^3-4x$とその上の点$P(2,0)$について考える
点$P$で曲線$C$に接する直線が曲線$C$と交わる点を$Q$とする。
また$R$は、$P$と異なる曲線$C$上の点であって、そして直線$PR$は曲線$C$に点$R$で接するものとする。
このとき、次の各問いに答えよ。
(1)点$Q$の$x$座標を求めよ。
(2)点$R$の$x$座標を求めよ。
(3)直線$PR$と曲線$C$で囲まれた部分の面積を求めよ。
この動画を見る
3次曲線$C:y=x^3-4x$とその上の点$P(2,0)$について考える
点$P$で曲線$C$に接する直線が曲線$C$と交わる点を$Q$とする。
また$R$は、$P$と異なる曲線$C$上の点であって、そして直線$PR$は曲線$C$に点$R$で接するものとする。
このとき、次の各問いに答えよ。
(1)点$Q$の$x$座標を求めよ。
(2)点$R$の$x$座標を求めよ。
(3)直線$PR$と曲線$C$で囲まれた部分の面積を求めよ。
福田のわかった数学〜高校2年生023〜円の外部から引いた接線の求め方

単元:
#数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円と接線
点$A(2,4)$から
円$C:(x+2)^2+(y-2)^2=10$
へ引いた接線の方程式を求めよ。
この動画を見る
数学$\textrm{II}$ 円と接線
点$A(2,4)$から
円$C:(x+2)^2+(y-2)^2=10$
へ引いた接線の方程式を求めよ。
数学基礎40「積分と面積公式」【高校数学ⅡB】を宇宙一わかりやすく

数学「大学入試良問集」【12−4 共通接線と面積】を宇宙一わかりやすく

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2つの関数$f_1(x)=-x^2+8x-9,f_2(x)=-x^2+2x+3$に対して、関数$F(x)$を次のように定義する。
$F(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
f_1(x)(xがf_1(x) \geqq f_2(x)をみたすとき) \\
f_2(x)(xがf_1(x) \lt f_2(x)をみたすとき)
\end{array}
\right.
\end{eqnarray}$
以下の問いに答えよ。
(1)$y=F(x)$のグラフをかけ。
(2)曲線$y=F(x)$上の異なる2点で接する直線$l$を求めよ。
(3)$y=F(x)$と$l$とで囲まれた図形の面積を求めよ。
この動画を見る
2つの関数$f_1(x)=-x^2+8x-9,f_2(x)=-x^2+2x+3$に対して、関数$F(x)$を次のように定義する。
$F(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
f_1(x)(xがf_1(x) \geqq f_2(x)をみたすとき) \\
f_2(x)(xがf_1(x) \lt f_2(x)をみたすとき)
\end{array}
\right.
\end{eqnarray}$
以下の問いに答えよ。
(1)$y=F(x)$のグラフをかけ。
(2)曲線$y=F(x)$上の異なる2点で接する直線$l$を求めよ。
(3)$y=F(x)$と$l$とで囲まれた図形の面積を求めよ。
数学「大学入試良問集」【12−3 極値と不等式の関係】を宇宙一わかりやすく

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を実数とし、関数$f(x)=x^3-3ax+a$を考える。
$0 \leqq x \leqq 1$となるような$a$の値の範囲を求めよ。
この動画を見る
$a$を実数とし、関数$f(x)=x^3-3ax+a$を考える。
$0 \leqq x \leqq 1$となるような$a$の値の範囲を求めよ。
極限値 文系でもできるよ

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \lim_{x\to \infty}\dfrac{\left[\dfrac{x^3}{\pi}\right]}{x^3}$
この動画を見る
これを解け.
$\displaystyle \lim_{x\to \infty}\dfrac{\left[\dfrac{x^3}{\pi}\right]}{x^3}$
数学「大学入試良問集」【12−1 微分と極値】を宇宙一わかりやすく

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を実数とする。
$f(x)=x^3+ax^2+(3a-6)x+5$について以下の問いに答えよ。
(1)
関数$y=f(x)$が極値をもつ$a$の範囲を求めよ。
(2)
関数$y=f(x)$が極値をもつ$a$に対して、関数$y=f(x)$は$x=p$で極大値、$x=q$で極小値をとるとする。
関数$y=f(x)$のグラフ上の2点$P(p,f(p)),Q(q,f(q))$を結ぶ直線の傾き$m$を$a$を用いて表せ。
この動画を見る
$a$を実数とする。
$f(x)=x^3+ax^2+(3a-6)x+5$について以下の問いに答えよ。
(1)
関数$y=f(x)$が極値をもつ$a$の範囲を求めよ。
(2)
関数$y=f(x)$が極値をもつ$a$に対して、関数$y=f(x)$は$x=p$で極大値、$x=q$で極小値をとるとする。
関数$y=f(x)$のグラフ上の2点$P(p,f(p)),Q(q,f(q))$を結ぶ直線の傾き$m$を$a$を用いて表せ。
【数Ⅱ】微分法と積分法:3次関数と接線の交点

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
3次関数$y=2x^3 -3x^2 -12x$について、次の問いに答えよ。
(1) この関数のグラフCの$x=1$における接線$\ell$ の方程式を求めよ。
(2) $C$と$\ell$との接点以外の共有点のx座標を求めよ。
この動画を見る
3次関数$y=2x^3 -3x^2 -12x$について、次の問いに答えよ。
(1) この関数のグラフCの$x=1$における接線$\ell$ の方程式を求めよ。
(2) $C$と$\ell$との接点以外の共有点のx座標を求めよ。
【数Ⅱ】微分法と積分法:共通接線

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2曲線$C_1:y=(x-\dfrac{1}{2})^2- \dfrac{1}{2},C_2:y=(x- \dfrac{5}{2})^2-\dfrac{5}{2}$ の
両方に接する直線を $\ell$とするとき、直線 $\ell$の方程式を答えよ。
この動画を見る
2曲線$C_1:y=(x-\dfrac{1}{2})^2- \dfrac{1}{2},C_2:y=(x- \dfrac{5}{2})^2-\dfrac{5}{2}$ の
両方に接する直線を $\ell$とするとき、直線 $\ell$の方程式を答えよ。