数Ⅱ - 質問解決D.B.(データベース) - Page 21

数Ⅱ

福田のおもしろ数学176〜ルートが無限に重なる等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{x\sqrt{x\sqrt{...}}}$=$x$ を証明してください。ただし$x$は正の実数とする。
この動画を見る 

たまには、こんなふうに解いても良いでしょうか?関数と面積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
動画内の関数において台形$S$の面積を求めよ。
この動画を見る 

この2つの違いは?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
この2つの違いは?
※問題は動画内参照
この動画を見る 

福田のおもしろ数学171〜ガウス記号の付いた方程式の解

アイキャッチ画像
単元: #数Ⅱ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\left[\frac{3}{x}\right]$-$\displaystyle\left[\frac{1}{x}\right]$=3 を満たす$x$を求めなさい。
この動画を見る 

福田のおもしろ数学170〜タンジェントに関する複雑な三角方程式

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\tan x$=$\tan(x+10°)\tan(x+20°)\tan(x+30°)$ を満たす$x$を全て求めなさい。
この動画を見る 

福田の数学〜九州大学2024年文系第1問〜2つの放物線と共通接線で囲まれる図形の面積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 2つの放物線
$C_1:y=2x^2$, $C_2:y=2x^2-8x+16$
の両方に接する直線を$l$とする。以下の問いに答えよ。
(1)直線$l$の方程式を求めよ。
(2)2つの放物線$C_1$, $C_2$と直線$l$で囲まれた図形の面積を求めよ。
この動画を見る 

福田のおもしろ数学168〜2の100!乗と2の100乗の階乗の大小

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2^{100!}$と$(2^{100})!$ の大小を比較してせよ。
この動画を見る 

【高校数学】三角関数を用いる積分(発展編)【数学のコツ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角関数を用いる積分(発展編)に関して解説していきます.
この動画を見る 

福田のおもしろ数学165〜4次方程式を工夫して解こう

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(x+2)^4$+$(x+1)^4$=17 を解け。
この動画を見る 

指数とルートの方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x$を求めよ。
$\sqrt{ \displaystyle \frac{4^{20}-2^{21}+1}{2^{20}+2^{11}+1} }=2^x-1$
この動画を見る 

福田の数学〜九州大学2024年理系第2問〜複素数平面と高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 整式$f(z)$=$z^6$+$z^4$+$z^2$+1
について、以下の問いに答えよ。
(1)$f(z)$=0 を満たす全ての複素数$z$に対して、|$z$|=1 が成り立つことを示せ。
(2)次の条件を満たす複素数$w$を全て求めよ。
条件:$f(z)$=0 を満たす全ての複素数$z$に対して
$f(wz)$=0 が成り立つ。
この動画を見る 

福田の数学〜九州大学2024年理系第1問〜空間における三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$を実数とし、座標空間内の3点P(-1,1,-1), Q(1,1,1), R($a$, $a^2$, $a^3$)を考える。以下の問いに答えよ。
(1)$a$≠-1, $a$≠1 のとき、3点P,Q,Rは一直線上にないことを示せ。
(2)$a$が-1<$a$<1 の範囲を動くとき、三角形PQRの面積の最大値を求めよ。
この動画を見る 

指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
以下を求めよ。
$(a^2)^3=a^{\boxed{ ? }}$
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
以下を求めよ。
$2^3=??$
$2^2=??$
$2^1=??$
$2^0=??$
$2^{-1}=??$
$2^{-2}=??$
この動画を見る 

福田のおもしろ数学161〜複雑な指数方程式の解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
方程式$(4+\sqrt{15})^x-2(4-\sqrt{15})^x$=1 を解け。
この動画を見る 

【高校数学】三角関数を用いる積分(応用編)【数学のコツ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角関数を用いる積分(応用編)に関して解説していきます.
この動画を見る 

#高知工科大学(2021)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#高知工科大学
指導講師: ますただ
問題文全文(内容文):
$49^=(\displaystyle \frac{1}{343})^{x+1}$を解け

出典:2021年高知工科大学
この動画を見る 

福田のおもしろ数学159〜俳句はスパコンとAIで終了してしまうのか

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#場合の数#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
俳句はスパコンとAIに駆逐されるのか?
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a+\displaystyle \frac{1}{a}=45$のとき、
$\displaystyle \frac{a^2}{a^4-a^2+1}=?$
この動画を見る 

福田の数学〜神戸大学2024年理系第2問〜放物線と2接線た作る三角形の重心の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$, $b$, $c$は実数で、$a$≠0とする。放物線$C$と直線$l_1$, $l_2$をそれぞれ
$C$:$y$=$ax^2$+$bx$+$c$
$l_1$:$y$=$-3x$+3
$l_2$:$y$=$x$+3
で定める。$l_1$, $l_2$がともに$C$と接するとき、以下の問いに答えよ。
(1)$b$を求めよ。$c$を$a$を用いて表せ。
(2)$C$が$x$軸と異なる2点で交わるとき、$\displaystyle\frac{1}{a}$のとりうる値の範囲を求めよ。
(3)$C$と$l_1$の接点をP、$C$と$l_2$の接点をQ、放物線$C$の頂点をRとする。$a$が(2)の条件を満たしながら動くとき、$\triangle PQR$の重心Gの軌跡を求めよ。
この動画を見る 

方程式を解け!!

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^3=(x-1)^3$を解け。
この動画を見る 

福田の数学〜大阪大学2024年文系第1問〜絶対値付き放物線と直線で囲まれた2つの面積が等しい条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 曲線$y$=|$x^2-1$|を$C$、直線$y$=$2a(x+1)$を$l$とする。ただし、$a$は0<$a$<1を満たす実数とする。
(1)曲線$C$と直線$l$の共有点の座標を全て求めよ。
(2)曲線$C$と直線$l$で囲まれた2つの部分の面積が等しくなる$a$の値を求めよ。
この動画を見る 

福田のおもしろ数学154〜2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x$, $y$が実数で、$x^2$+$(y-1)^2$≦1 のとき、$z$=$\displaystyle\frac{x+y+1}{x-y+3}$ の最大値、最小値を求めよ。
この動画を見る 

【高校数学】三角関数を用いる積分(基本編)【数学のコツ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角関数を用いる積分(基本編)に関して解説していきます.
この動画を見る 

#宮崎大学(2016)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{\sqrt{ 1+log\ x }}{x} dx$

出典:2016年宮崎大学
この動画を見る 

指数の方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$10^x=(10^{624}+25)^2-(10^{624}-25)^2$
$x$を求めよ。
この動画を見る 

福田の数学〜名古屋大学2024年文系第1問〜高次方程式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 次の問いに答えよ。
(1)方程式$x^3$-$3x^2$-50=0 の実数解を求めよ。
(2)実数$p$, $q$が$p$+$q$=$pq$ を満たすとする。$X$=$pq$とおくとき、$p^3$+$q^3$を$X$で表せ。
(3)条件
$p^3$+$q^3$=50, $\displaystyle\frac{1}{p}$+$\displaystyle\frac{1}{q}$=1, $p$<$q$
を満たす0でない実数の組($p$, $q$)をすべて求めよ。
この動画を見る 

#福島大学(2021) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#福島大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos\ x\ log(\sin\ x) dx$

出典:2021年福島大学
この動画を見る 

福田のおもしろ数学148〜円の面積

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#図形と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
左図(※動画参照)で4つの四角形はすべて面積が$16 \textrm{cm}^2$の正方形です。
円の面積を求めて下さい。
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第3問〜放物線と三角形の面積の最大

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)$=$\displaystyle-\frac{1}{8}x^2$+$5x$+18 とし、放物線$C$:$y$=$f(x)$と2つの直線$l_1$:$y$=$-x$, $l_2$:$y$=$x$ を考える。$C$と$l_1$の共有点のうち$x$座標が負のものをAとし、$C$と$l_2$の共有点のうち$x$座標が正のものをBとする。また、Aの$x$座標を$a$、Bの$x$座標を$b$とする。
(i)$a$=$\boxed{アイ}$-$\boxed{ウエ}\sqrt{\boxed{オ}}$, $a$=$\boxed{カキ}$である。
(ii)$C$と$l_2$で囲まれた部分のうち、$x$≧0の範囲にあるものの面積は$\boxed{クケコサ}$である。
以下、Pを$C$上の点とし、Pの$x$座標を$p$とする。またPにおける$C$の接線と$y$軸の交点をDとする。
(iii)$p$が0<$p$<$b$の範囲を動くとき、△ABPの面積が最大になるのは
$p$=$\boxed{シス}$-$\boxed{セ}\sqrt{\boxed{ソ}}$ のときである。
(iv)$p$=8 のとき、Dの$y$座標は$\boxed{タチ}$ である。
(v)$p$が0<$p$<$b$の範囲を動くとき、△BDPの面積$S$が最大になるのは
$p$=$\boxed{ツテ}$ のときであり、そのときの$S$は$\boxed{トナニ}$である。
この動画を見る 
PAGE TOP