関数と極限 - 質問解決D.B.(データベース) - Page 12

関数と極限

【数学Ⅲ/微分】逆関数の微分

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
逆関数の微分法の公式を用いて、次の関数を微分せよ。

$y=x^{\frac{1}{5}}$
この動画を見る 

高専数学 微積II #61(1)(2) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dz}{dt}$を求めよ.

(1)$z=\sin (3x+2y)$
$x=\dfrac{1}{t},y=\sqrt t$

(2)$z=\log(2x^2+xy+5y^2)$
$x=\cos t,y=\sin t$
この動画を見る 

お茶の水女子大 3次関数と放物線

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3+(k+1)x^2+kx$と$y=x^2q$とが全ての実数$q$において
共有点がただ1つである$k$の範囲を求めよ.

2021お茶の水女子大過去問
この動画を見る 

高専数学 微積II #53(3)(4) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$z=f(x,y)$:全微分可能
$z_u,z_{\nu}$を,$u,\nu,z_x,z_y$で表せ.

(3)$x=\tan\dfrac{\nu}{u},y-\cos(u+\nu)$
(4)$x=u\log\nu,y=e^u \nu$
この動画を見る 

高専数学 微積II #53(1)(2) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$z=f(x,y)$:全微分可能
$z_u,z_{\nu}$を$u,\nu,z_x,z_y$で表せ.

(1)$x=2u^2 \nu^3,y=u+3\nu$
(2)$x=u^2+\nu^2,y=\dfrac{u}{\nu}$
この動画を見る 

高専数学 微積II #51(3)(4) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$z=f(x,y)$:全微分可能
$\dfrac{dz}{dt}$を$t,\dfrac{\alpha z}{\alpha x},\dfrac{\alpha z}{\alpha y}$で表せ.

(3)$x=\sin t+\cos t$
$y=\sin t \cos t$
(4)$x=\dfrac{1}{\sqrt{x+1}}$
$y=\sqrt{t+1}$
この動画を見る 

高専数学 微積II #51(1)(2) 合成関数の微分法

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$z=f(x,y)$:全微分可能である.
$\dfrac{dz}{dt}$を$t,\dfrac{\delta z}{\delta x},\dfrac{\delta z}{\delta y}$で表せ.

(1)$x-te^t,y=\log t$
(2)$x=\dfrac{t}{2t+1},y=\dfrac{t+1}{2t+1}$
この動画を見る 

福田のわかった数学〜高校3年生理系055〜格子点の個数と極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 格子点の個数と極限
右図の斜線部分(※動画参照)に含まれる
格子点の総数を$a_n$とする。
$\lim_{n \to \infty}\frac{a_n}{n^2}$を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系050〜極限(50)連続と微分可能(1)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$
連続と微分可能(1)
$f(x)$が$x=a$で微分可能 $\Rightarrow f(x)$は$x=a$で連続
を示せ。また、逆が成り立たないことを示せ。
この動画を見る 

東京海洋大 3次関数の基本

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$と$y=ax+b$が相異なる3点で交わる$a,b$の条件を求めよ.

2021東京海洋大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系049〜極限(49)中間値の定理(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(3)
Aさんは300km離れた地点まで車でちょうど5時間かけて移動した。
このときこの300kmの中のどこか60kmの区間を
ちょうど1時間で通過したことを示せ。
この動画を見る 

06滋賀県教員採用試験(数学:1-(3) 関数のグラフ)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#関数と極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$y=\displaystyle \lim_{n\to\infty} \dfrac{x-x^{2n}}{1+x^{2n}}$
のグラフをかけ.
この動画を見る 

福田のわかった数学〜高校3年生理系048〜極限(48)中間値の定理(2)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(2)
関数$f(x),g(x)$は区間[a,b]で連続でf(x)の最大値はg(x)の最大値よりも大きく、
f(x)の最小値はg(x)の最小値よりも小さい。このとき、方程式$f(x)=g(x)$は$a \leqq x \leqq b$
に実数解をもつことを示せ。
この動画を見る 

福田のわかった数学〜高校3年生理系047〜極限(47)中間値の定理(1)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(1)
方程式$\sqrt x-2\log_3x=0$は、
$1 \lt x \lt 3$に実数解をもつことを示せ。
この動画を見る 

福田のわかった数学〜高校3年生理系046〜極限(46)関数の連続性(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 関数の連続性(3)
$f(x)=\left\{\begin{array}{1}
\displaystyle\frac{x^2}{|x|} (x≠0)\\
0  (x=0)\\
\end{array}\right.$
は、$x=0$で連続か、調べよ。
この動画を見る 

福田のわかった数学〜高校3年生理系045〜極限(45)関数の連続性(2)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系044〜極限(44)関数の連続性(1)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$数学\textrm{III}$ $関数の連続性(1)$

$\displaystyle f(x) =\lim_{n \to \infty}\frac{x^{2n}-x^{2n-1}+ax^2+bx}{x^{2n}+1}$
が連続関数となるように$aとb$を定めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系043〜極限(43)有名な極限の証明(3)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(3)\\
\lim_{x \to \infty}\frac{\log x}{x}=0を既知として\\
\lim_{x \to +0}x\log x を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系042〜極限(42)有名な極限の証明(2)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(2)\\
\lim_{x \to \infty}xe^{-x}=0を既知として\\
\lim_{x \to \infty}\frac{\log x}{x} を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系041〜極限(41)有名な極限の証明(1)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 有名な極限を証明(1)
(1)$x \gt 0$で$e^x \gt 1+x+\dfrac{x^2}{2}$ を示せ。
(2)$\displaystyle \lim_{x \to \infty}xe^{-x}$ を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系040〜極限(40)関数の極限、色々な極限(10)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 色々な極限(10)
$\displaystyle \lim_{x \to \infty}(2x+3)\sin(\log(x+3)-$$\log x)$
を求めよ。
この動画を見る 

【17−9 自然対数の底と極限】を宇宙一わかりやすく「数学大学入試良問集」

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を2以上の整数とする。
平面上に$n+2$個の点$O,P_1,P_2・・・P_n$があり、次の2つの条件を満たしている。
①$\angle P_{k-1}OP_k=\displaystyle \frac{\pi}{n}(1 \leqq k \leqq n),\angle OP_{k-1}P_k=\angle OP_0P_1(2 \leqq k \leqq n)$

②線分$OP_0$の長さは1、線分$OP_1$の長さは$1+\displaystyle \frac{1}{n}$である。

線分$P_{k-1}P_k$の長さを$a_k$とし、$s_n=\displaystyle \sum_{k=1}^n a_k$とおくとき、$\displaystyle \lim_{ n \to \infty }s_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【17−8 不等式とハサミウチの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
$h \gt 0$として、不等式$(1+h)^n \geqq 1+nh+\displaystyle \frac{n(n-1)}{2}h^2$がすべての自然数$n$について成り立つことを数学的帰納法を用いて説明せよ。

(2)
(1)の不等式を使って、$0 \lt x \lt 1$のとき、数列$\{nx^n\}$が$0$に収束することを示せ。

(3)
$0 \lt x \lt 1$のとき
無限級数$2x+4x^2+6x^3+・・・+2nx^n+・・・$の和を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系039〜極限(39)関数の極限、色々な極限(9)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(9)\\
\lim_{x \to 0}\frac{e^{2x}-e^{-x}}{x} を求めよ。
\end{eqnarray}
この動画を見る 

数学「大学入試良問集」【17−7 極限値が収束する条件】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\displaystyle \lim_{ x \to \frac{\pi}{3} }\displaystyle \frac{a\ \sin\ x+b\ \cos\ x}{x-\frac{\pi}{3}}=5(a,b$は定数$)$のとき、$a$と$b$の値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(2)〜回転体の体積と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(2)0 \lt \alpha \lt 1,m \gt 0$とする。$曲線y=x^{\alpha}-mx(x \geqq 0)$と$x軸$で囲まれた図形を$x軸$の周りに1回転させてできる回転体の体積を$V$とする。$m$を固定して$a \to +0$とするときの$V$の極限値を$m$の式で表すと、$\lim_{a \to +0}V=\boxed{\ \ (え)\ \ }$となる。
また、$\alpha$を固定して$m \to \infty$とするとき$m^3V$が$0$でない数に収束するならば
$\alpha=\boxed{\ \ (お)\ \ }$である。

2021慶應義塾大学医学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系038〜極限(38)関数の極限、色々な極限(8)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$数学\textrm{III}$ 色々な極限(8)
$\lim_{n \to \infty}x^{2-5\alpha} (0 \lt \alpha \lt 1)$ を求めよ。
この動画を見る 

数学「大学入試良問集」【17−6 直線上の点の極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)=-\displaystyle \frac{1}{2}x+3$とする。
$x_1=1$とおいて数列$x_n=f(x_{n-1})$ $n=2,3,・・・$をつくり、平面座標上に点$P_n(x_n,f(x_n))$をとる。
このとき、次の各問いに答えよ。
(1)
数列$\{x_n\}$の一般項$x_n$を求めよ。

(2)
動点$P$が点$P_1$を出発して、$P_2,P_3,・・・,P_n,・・・$と進むとき、動点$P$はどのような点に近づくか。
その座標を求めよ。

(3)
線分$P_nP_{n+1}$の長さを$l_n$ $n=1,2,3,・・・$とする。
$L=\displaystyle \sum_{n=1}^n l_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【17−5 図形と三角関数の極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$O$を原点とする座標平面上に2点$A(2,0),B(0,1)$がある。
自然数$n$に対し、線分$AB$を$1:n$に内分する点を$P_n$とし、$\angle AOP_n\theta_n$とする。
ただし、$0 \lt \theta_n \lt \displaystyle \frac{\pi}{2}$である。
線分$AP_n$の長さを$l_n$として、$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{l_n}{\theta_n}$を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系037〜極限(37)関数の極限、色々な極限(7)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$数学\textrm{III}$ $色々な極限(7)$
$\lim_{n \to \infty}n^2(\cos\frac{1}{n+1}-\cos\frac{1}{2n})$を求めよ。
この動画を見る 
PAGE TOP