色々な関数の導関数

【数Ⅲ】【微分とその応用】n次導関数と微分の表し方 ※問題文は概要欄

単元:
#微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数について, を求めよ。ただし (1)(2)では を用いて表してもよい。また(3)(4)では、t$$ の関数として表せ。 は正の定数とする。
の関数 が、 を媒介変数として と表せるとき、 を の関数として表せ。
この動画を見る
次の関数について,
【数Ⅲ】【微分とその応用】色々な関数の微分2 ※問題文は概要欄

単元:
#微分とその応用#色々な関数の導関数#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
対数微分法により次の関数を微分せよ。ただし、aは定数とする。
y= (x+1)²/((x+2)³(x+3)⁴)
以下、略
次の関数を微分せよ。ただし x>0 とする。
y= x^sinx
以下、略
lim_(k→0) (1+k)^(1/k)=e を用いて、次の極限を求めよ。
lim_(x→0) ((log(1+x)/x)
以下、略
この動画を見る
対数微分法により次の関数を微分せよ。ただし、aは定数とする。
y= (x+1)²/((x+2)³(x+3)⁴)
以下、略
次の関数を微分せよ。ただし x>0 とする。
y= x^sinx
以下、略
lim_(k→0) (1+k)^(1/k)=e を用いて、次の極限を求めよ。
lim_(x→0) ((log(1+x)/x)
以下、略
【数Ⅲ】【微分とその応用】色々な関数の微分1 ※問題文は概要欄

単元:
#微分とその応用#色々な関数の導関数#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
この動画を見る
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
福田の数学〜東京大学2018年理系第1問〜関数の増減と極限の計算

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
のぞうげんひょうを作り、 のときの極限を調べよ。
2018東京大学理過去問
この動画を見る
2018東京大学理過去問
福田の数学〜陰関数を考える貴重な問題〜明治大学2023年全学部統一Ⅲ第4問〜陰関数のグラフの増減とグラフ

単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
座標空間において、2点(-2,0),(2,0)からの距離の積が4であるような点Pの軌跡を考える。点Pの座標を( , )とすると、 , は次の方程式を満たす。
+ + =16 ...(1)
方程式(1)が表す曲線を とする。 の概形を描くことにしよう。まず、曲線 と 軸との共有点の 座標は と である。次に、(1)を に関する2次方程式とみて解けば、 ≧0 であるので、
= + ...(2)
となり、また のとりうる値の範囲は
≦ ≦
となる。 ≧0, ≧0とすれば、方程式(2)は0≦ ≦ を定義域とする の関数 を定める。このとき、0< のとき共有点はなく、0≦ ≦ のとき共有点がある。
共有点の個数は、 =0のとき 個、0< < のとき 個、 = のとき 個となる。
、 、 、 の解答群
⓪ ① ② ③ ④
⑤ ⑥ ⑦ ⑧ ⑨
この動画を見る
方程式(1)が表す曲線を
となり、また
となる。
共有点の個数は、
⓪
⑤
数学どうにかしたい人へ

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
関数はパターンだ!!宮崎学園 (宮崎)

単元:
#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
数学を数楽に
問題文全文(内容文):
点Dの座標は?
*図は動画内参照
宮崎学園高等学校
この動画を見る
点Dの座標は?
*図は動画内参照
宮崎学園高等学校
関数はパターンだ!!北陸高校(福井県)

単元:
#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
数学を数楽に
問題文全文(内容文):
△OAB=△PAB
S=?(S>2)
*図は動画内参照
北陸(改)
この動画を見る
△OAB=△PAB
S=?(S>2)
*図は動画内参照
北陸(改)
福田の数学〜筑波大学2023年理系第5問〜関数の増減と極限

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
= ( >0)とし、曲線 = をCとする。また を正の実数とする。さらに、正の実数 に対して、曲線C、2直線 = , = + 、および 軸で囲まれた図形の面積を とする。
(1) を求めよ。
(2) を最小にする がただ1つ存在することを示し、その を を用いて表せ。
(3)(2)で得られた を とする。このとき極限値 を求めよ。
この動画を見る
(1)
(2)
(3)(2)で得られた
福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
媒介変数表示
= , = (0≦ ≦ )
で表される曲線をCとする。以下の問いに答えよ。
(1) =0 または =0 となる の値を求めよ。
(2)Cの概形を 平面上に描け。
(3)Cの ≦0 の部分と 軸で囲まれた図形の面積を求めよ。
2023神戸大学理系過去問
この動画を見る
で表される曲線をCとする。以下の問いに答えよ。
(1)
(2)Cの概形を
(3)Cの
2023神戸大学理系過去問
福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
を求めよ。
2023名古屋大学理系過去問
この動画を見る
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
2023名古屋大学理系過去問
福田の数学〜早稲田大学2023年理工学部第4問〜複素数平面上の点の軌跡

単元:
#大学入試過去問(数学)#複素数平面#微分とその応用#複素数平面#図形への応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
複素数平面上に2点A(1), B( )がある。ただし、 は虚数単位である。
複素数zに対し = で表される点 を考える。以下の問いに答えよ。
(1)z=1, , のときのwをそれぞれ計算せよ。
(2)実数tに対し、z=(1-t)+t とする。 = について、 の実部を求め、さらに( )( )を求めよ。
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
この動画を見る
複素数zに対し
(1)z=1,
(2)実数tに対し、z=(1-t)+t
(3)wと原点を結んでできる線分Lを考える。zが線分AB上を動くとき、線分Lが通過する範囲を図示し、その面積を求めよ。
大学入試問題#470「誘導なくてもどうにかできそう」 信州大学 理・医学部(2021) #微積の応用

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
(1)
を求めよ
(2)
は微分可能を示せ
を求めよ
(3)
出典:2021年信州大学 入試問題
この動画を見る
(1)
(2)
(3)
出典:2021年信州大学 入試問題
福田の1.5倍速演習〜合格する重要問題080〜京都大学2018年度理系第5問〜曲線の長さと極限

単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
曲線y= 上の点A(t, )における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ , とする。このとき、極限 を求めよ。
2018京都大学理系過去問
この動画を見る
(1)点Bの座標(u(t), v(t))を求めよ。また
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれ
2018京都大学理系過去問
大学入試問題#441「見た目と違って解いてみたら、良問と実感するはず!」 信州大学(2022) #不等式

単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
:自然数
:実数
を示せ
出典:2022年信州大学 入試問題
この動画を見る
出典:2022年信州大学 入試問題
#大学への数学「大学受験で、たまに使う技」 学力コンテスト (1)(2) #定積分

【数Ⅲ】三角関数・指数・対数の微分公式【合成関数との合せ技】

【数Ⅲ】微分法・積分法:<公式忘れても大丈夫!>三角関数の微積分 ~ぐるぐる回そう~

単元:
#微分とその応用#積分とその応用#色々な関数の導関数#不定積分#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形の重心における、頂点→重心:重心→中点の線分の比を導出する動画になります。
この動画を見る
三角形の重心における、頂点→重心:重心→中点の線分の比を導出する動画になります。
福田のわかった数学〜高校3年生理系077〜極値(1)極大値をもつ条件

単元:
#数Ⅱ#三角関数#三角関数とグラフ#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学 極値(1)
の範囲で
極大値をもつように定数aの値の範囲を定めよ。
この動画を見る
数学
極大値をもつように定数aの値の範囲を定めよ。
福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積

単元:
#微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
関数 の定義域は であり、
は のとき、
最大値 をとる。曲線 、
直線 およびy軸で囲まれた図形の面積は となる。
の解答群
この動画を見る
最大値
直線
福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
Oを原点とする座標平面において、楕円 上に異なる2点
がある。 における接線 と における接線 の交点を とし、線分 の
中点をRとする。
(1) の座標を とするとき、 の方程式は
と表される。
(2)直線 の方程式は、a,bを用いて と表される。
(3)3点O,R,Qは一直線上にあって が成り立つ。
(4) と のどちらもy軸と平行ではないとする。このとき、 と の傾きは
tの方程式 の解である。
(5) と が直交しながら が動くとする。
の軌跡の方程式を求めよ。 のy座標の最大値を求めよ。
の軌跡の概形を描け。
2021上智大学理系過去問
この動画を見る
がある。
中点をRとする。
(1)
と表される。
(2)直線
(3)3点O,R,Qは一直線上にあって
(4)
tの方程式
(5)
2021上智大学理系過去問
福田のわかった数学〜高校3年生理系072〜接線(4)共通接線(2)

単元:
#数Ⅱ#微分とその応用#微分法#色々な関数の導関数#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学 接線(4) 共通接線(2)
2曲線 と の両方に接する直線の方程式を求めよ。
この動画を見る
数学
2曲線
福田のわかった数学〜高校3年生理系071〜接線(3)共通接線(1)

単元:
#微分とその応用#微分法#色々な関数の導関数#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学 接線(3) 共通接線(1)
2曲線 がともに点Pを通り、点Pにおいて共通の
接線をもつとき、aの値と接線の方程式を求めよ。
この動画を見る
数学
2曲線
接線をもつとき、aの値と接線の方程式を求めよ。
福田のわかった数学〜高校3年生理系070〜接線(2)媒介変数表示の接線

単元:
#平面上の曲線#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学 接線(2) 媒介変数表示の接線
で表される曲線の のときの点Pにおける接線を求めよ。
この動画を見る
数学
で表される曲線の
【数Ⅲ】微分法:三角関数の微分公式+演習

【数Ⅲ】微分法:指数対数の微分、演習

単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう
(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
(11) (12)
(13) (14)
この動画を見る
次の関数を微分しよう
(1)
(3)
(5)
(7)
(9)
(11)
(13)
福田のわかった数学〜高校3年生理系067〜微分(12)微分の計算

福田のわかった数学〜高校3年生理系065〜微分(10)定義に従った微分(2)log xの微分

12東京都教員採用試験(数学:1-(5) 連続と微分)

福田のわかった数学〜高校3年生理系061〜微分(6)高次導関数
