微分とその応用
【数Ⅲ-159】定積分で表された関数②
単元:
#微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数➁)
Q.次の等式を満たす関数$f(x)$を求めよ。
①$f(x)=\frac{1}{x}+\int_1^2 tf(t)dt$
➁$f(x)=x+\int_0^1 f(t)e^tdt$
③$\int_1^x (x-t)f(x)dt=x^4-2x^2+3$
この動画を見る
数Ⅲ(定積分で表された関数➁)
Q.次の等式を満たす関数$f(x)$を求めよ。
①$f(x)=\frac{1}{x}+\int_1^2 tf(t)dt$
➁$f(x)=x+\int_0^1 f(t)e^tdt$
③$\int_1^x (x-t)f(x)dt=x^4-2x^2+3$
16東京都教員採用試験(数学:3番 微積)
単元:
#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
3⃣$C_1 : y=ax^2,C_2:y=logx$
$C_1$と$C_2$は共通に接線lをもつ
(1)定数aの値
(2)接線lの方程式
(3)$C_1$,l,y軸で囲まれた面積S
この動画を見る
3⃣$C_1 : y=ax^2,C_2:y=logx$
$C_1$と$C_2$は共通に接線lをもつ
(1)定数aの値
(2)接線lの方程式
(3)$C_1$,l,y軸で囲まれた面積S
【数Ⅲ-158】定積分で表された関数①
単元:
#微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。
①$\int_a^x \frac{t}{1+e^{2t}}dt$
➁$\int_0^{x} (x-t)e^{2t}dt$
③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
この動画を見る
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。
①$\int_a^x \frac{t}{1+e^{2t}}dt$
➁$\int_0^{x} (x-t)e^{2t}dt$
③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
【数Ⅲ】微分法: 微分係数の利用! f'(a)が存在するとき、次の極限をf(a),f'(a)で表せ。(1)lim(h→0){f(a+4h)-f(a+2h)}/h
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f'(a)$が存在するとき、次の極限を$f(a),f'(a)$で表せ。
(1)$\displaystyle \lim_{h\to 0}\dfrac{f(a+4h)-f(a+2h)}{h}$
この動画を見る
$f'(a)$が存在するとき、次の極限を$f(a),f'(a)$で表せ。
(1)$\displaystyle \lim_{h\to 0}\dfrac{f(a+4h)-f(a+2h)}{h}$
【数学Ⅲ】平均値の定理・接線法線問題 すぐ理解できて一生忘れない攻略法!
単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅲ】平均値の定理・接線法線問題解説動画です
-----------------
$y=\displaystyle \frac{3x}{x+2}$
(1)曲線状の点A(1,1)を通る接線の方程式は?
(2)(0,-1)から$y-log x$に引いた接線の方程式は?
(3)$y=3\sqrt{ x^2 }$の(1,1)上の法線の方程式は?
(4)$f(x)=2x^2-x$において$[0,1]$について、平均値の定理の式を満たすCの値は?
この動画を見る
【数学Ⅲ】平均値の定理・接線法線問題解説動画です
-----------------
$y=\displaystyle \frac{3x}{x+2}$
(1)曲線状の点A(1,1)を通る接線の方程式は?
(2)(0,-1)から$y-log x$に引いた接線の方程式は?
(3)$y=3\sqrt{ x^2 }$の(1,1)上の法線の方程式は?
(4)$f(x)=2x^2-x$において$[0,1]$について、平均値の定理の式を満たすCの値は?
上智大 関数の最大最小
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+ax+b}{x^2-x+1}$の最大値が$3$、最小値が$\displaystyle \frac{1}{3}$
$(a,b)$の値を求めよ
出典:2005年上智大学 過去問
この動画を見る
$f(x)=\displaystyle \frac{x^2+ax+b}{x^2-x+1}$の最大値が$3$、最小値が$\displaystyle \frac{1}{3}$
$(a,b)$の値を求めよ
出典:2005年上智大学 過去問
佐賀大 三次関数
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$上を点$P$が原点から点$A(a,a^3-a)$まで動く
$(a \gt 0)\triangle OAP$の最大値を求めよ
出典:2005年佐賀大学 過去問
この動画を見る
$y=x^3-x$上を点$P$が原点から点$A(a,a^3-a)$まで動く
$(a \gt 0)\triangle OAP$の最大値を求めよ
出典:2005年佐賀大学 過去問
東北大 積分
単元:
#数Ⅱ#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6ax^2+bx+1$
$x=a(a \gt 0)$で極大値
$f(x)$と直線$y=f(a)$で囲まれた面積が$a^2$
$a$の値を求めよ
出典:1996年東北大学 過去問
この動画を見る
$f(x)=x^3-6ax^2+bx+1$
$x=a(a \gt 0)$で極大値
$f(x)$と直線$y=f(a)$で囲まれた面積が$a^2$
$a$の値を求めよ
出典:1996年東北大学 過去問
慶応義塾大 指数方程式
単元:
#数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$8^x-6・4^x+5・2^x=k$が異なる3つの実数解をもつ$k$の範囲を求めよ
出典:慶應義塾大学 過去問
この動画を見る
$8^x-6・4^x+5・2^x=k$が異なる3つの実数解をもつ$k$の範囲を求めよ
出典:慶應義塾大学 過去問
東北大 積分
単元:
#微分とその応用#積分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=-x^3-2x^2+a$と$y=x^3-16x$は$x$座標が負の点で共有点をもち、その点で共通接線をもつ。
$a$の値と囲まれた面積を求めよ
出典:1996年東北大学 過去問
この動画を見る
$y=-x^3-2x^2+a$と$y=x^3-16x$は$x$座標が負の点で共有点をもち、その点で共通接線をもつ。
$a$の値と囲まれた面積を求めよ
出典:1996年東北大学 過去問
慶応義塾大 4次方程式
単元:
#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3x^4-4x^3-12x^2-k=0$が相異なる4つの実数解をもつ$k$の範囲
そのときの4つの解のうち最大のものを$\alpha$とする。
$\alpha$の範囲を求めよ
出典:1989年慶應義塾大学 過去問
この動画を見る
$3x^4-4x^3-12x^2-k=0$が相異なる4つの実数解をもつ$k$の範囲
そのときの4つの解のうち最大のものを$\alpha$とする。
$\alpha$の範囲を求めよ
出典:1989年慶應義塾大学 過去問
甲南大 関数の最小値
単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#甲南大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-x+a)^2-x^2+x$の最小値を求めよ
出典:甲南大学 過去問
この動画を見る
$f(x)=(x^2-x+a)^2-x^2+x$の最小値を求めよ
出典:甲南大学 過去問
光文社新書「中学の知識でオイラー公式がわかる」Vol11 sinの微分
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
sinの微分解説動画です
$\displaystyle \lim_{ h \to o } \displaystyle \frac{\sin h}{h} =1$
この動画を見る
sinの微分解説動画です
$\displaystyle \lim_{ h \to o } \displaystyle \frac{\sin h}{h} =1$
光文社新書「中学の知識でオイラーの公式がわかる」Vol.7積の微分の公式証明
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
積の微分の公式証明解説動画です
この動画を見る
積の微分の公式証明解説動画です
光文社新書「中学の知識でオイラーの公式がわかる」Vol.6 自由落下運動と微分
対数の近似値の求め方
【数学III】関数の近似式を10分でマスターする
熊本大 関数の領域
単元:
#大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$
$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。
出典:2001年熊本大学 過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$
$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。
出典:2001年熊本大学 過去問
信州大 三次方程式の解の極限値
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#信州大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2x^3+3nx^2-3(n+1)=0(n$自然数$)$
(1)
$n$の値に関わらず正の解をただ一つだけもつことを示せ
(2)
正の解を$\alpha_n$とする。
$\displaystyle \lim_{ n \to \infty }\alpha_n$を求めよ
出典:1998年信州大学 過去問
この動画を見る
$2x^3+3nx^2-3(n+1)=0(n$自然数$)$
(1)
$n$の値に関わらず正の解をただ一つだけもつことを示せ
(2)
正の解を$\alpha_n$とする。
$\displaystyle \lim_{ n \to \infty }\alpha_n$を求めよ
出典:1998年信州大学 過去問
茨城大 3次関数と接線 積分 1/12公式導出
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-4x$と$(a,f(a))$における接線とで囲まれた面積$(a \neq 0)$
出典:1994年茨城大学 過去問
この動画を見る
$f(x)=x^3-4x$と$(a,f(a))$における接線とで囲まれた面積$(a \neq 0)$
出典:1994年茨城大学 過去問
東京商船大 微分公式の証明
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京商船大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2-1)^n(n$自然数$)$
(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ
(2)
$f(x)$の極値を求めよ
出典:東京海洋大学 過去問
この動画を見る
$f(x)=(x^2-1)^n(n$自然数$)$
(1)
$f'(x)=2nx(x^2-1)^{n-1}$を証明せよ
(2)
$f(x)$の極値を求めよ
出典:東京海洋大学 過去問
東工大 y=e^x に引ける接線の数
単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=e^x$に$(a,b)$から引ける接線の本数を求めよ
出典:1980年東京工業大学 過去問
この動画を見る
$y=e^x$に$(a,b)$から引ける接線の本数を求めよ
出典:1980年東京工業大学 過去問
埼玉大 微分積分 三次関数極値の差 ヨビノリ技
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ
出典:2018年埼玉大学 過去問
この動画を見る
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ
出典:2018年埼玉大学 過去問
京都大 3次関数 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
この動画を見る
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
東京海洋大 3次関数
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京海洋大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3-15ax^2+24a^2x+a^2$
$y=f(x)$のグラフと$x$軸とが$0 \lt x \lt 1$の範囲でただ一つの共有点をもつための$a$の条件を求めよ
出典:2005年東京海洋大学 過去問
この動画を見る
$f(x)=2x^3-15ax^2+24a^2x+a^2$
$y=f(x)$のグラフと$x$軸とが$0 \lt x \lt 1$の範囲でただ一つの共有点をもつための$a$の条件を求めよ
出典:2005年東京海洋大学 過去問
京都大 関数
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$
すべての実数$x$にたいして不等式
$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ
出典:2014年京都大学 過去問
この動画を見る
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$
すべての実数$x$にたいして不等式
$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ
出典:2014年京都大学 過去問
福島大 3次関数の接線 微分
単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(-1,1)$から$y=x^3-2px+3$に接線が2本引けるとき$p$の値を求めよ
出典:1991年福島大学 過去問
この動画を見る
$(-1,1)$から$y=x^3-2px+3$に接線が2本引けるとき$p$の値を求めよ
出典:1991年福島大学 過去問
早稲田大(国際教養)微分
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-3mx+m-3=0$が3個の異なる実数解$\alpha ,\beta,\gamma$をもつ$(\alpha \lt \beta \lt \gamma)m,\alpha,\beta,\gamma$の範囲を求めよ
出典:2018年早稲田大学 過去問
この動画を見る
$x^3-3mx+m-3=0$が3個の異なる実数解$\alpha ,\beta,\gamma$をもつ$(\alpha \lt \beta \lt \gamma)m,\alpha,\beta,\gamma$の範囲を求めよ
出典:2018年早稲田大学 過去問
筑波大 指数・対数関数の微分
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
全ての正の実数$x$について
$x^{\sqrt{ a }} \leqq a^{\sqrt{ x }}$となる正の実数$a$を求めよ
出典:筑波大学 過去問
この動画を見る
全ての正の実数$x$について
$x^{\sqrt{ a }} \leqq a^{\sqrt{ x }}$となる正の実数$a$を求めよ
出典:筑波大学 過去問
大阪大 3次関数
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
この動画を見る
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問