数学(高校生) - 質問解決D.B.(データベース) - Page 305

数学(高校生)

【高校数学】  数Ⅰ-74  絶対値を含む関数のグラフ①

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフを書き、その値域を求めよう。
①$y=| 2x+4 |(-3 \leqq x \leqq 1)$

②$y=| x |+| x-1 |$
この動画を見る 

【高校数学】  数Ⅰ-72  2次関数と共有点⑤

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2次方程式$2x^2-5x+a=0$の1つの解が0と1の間にあり、ほかの解が2と3の間にあるように、定数aの値の範囲を定めよう。
この動画を見る 

【高校数学】  数Ⅰ-71  2次関数と共有点④

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2次関数$y=x^2-ax-a+3$のグラフが次のようになるとき、定数aの値の範囲は?

①x軸の正の部分と、異なる2点で交わる。
②x軸と、制の部分と負の部分で交わる。
③x軸の$x \lt -2$の部分と、異なる2点で交わる。
この動画を見る 

【高校数学】  数Ⅰ-70  2次不等式⑨

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎周囲の長さが20cmの長方形の面積を9$cm^2$以上、21$cm^2$以下にするには、短い方の辺の長さをどのような範囲に取ればよいか求めよう。
この動画を見る 

【高校数学】  数Ⅰ-69  2次不等式⑧

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2つの2次方程式$x^2-x+a=0,x^2+2ax-3a+4=0$について、次の条件を満たす定数aの値の範囲を求めよう。

①両方とも実数解をもつ
②少なくとも一方が実数解をもつ
③一方だけが実数解をもつ
この動画を見る 

【高校数学】  数Ⅰ-68  2次不等式⑦ ・ 連立不等式編

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + x-12 \leqq 0 \\
x^2 - 3x+2 \gt0
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 4x+1 \geqq 0 \\
-x^2 - 12+ \gt x
\end{array}
\right.
\end{eqnarray}$

③$2 \geqq x^2-x \geqq 4x-4$
この動画を見る 

【高校数学】  数Ⅰ-67  2次不等式⑥

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq x \leqq2$の範囲において、常に$x^2-2ax+3a \gt 0$
が成り立つように、定数aの値の範囲を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-66  2次不等式⑤

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2次不等式$x^2+2ax+a+6\gt0$の解がすべての実数であるとき、aの値の範囲は?

②すべての実数xについて、不等式$ax^2+3ax+a-1 \leqq 0$が成り立つように、aの値の範囲を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-65  2次不等式④

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たすように、定数$a,b$の値をそれぞれ求めよう。
①2次不等式$x^2+ax+b\gt0$の解が$x \lt -2,1 \lt x$
②2次不等式$ax^2+9x+2b \geqq 0$の解が$4\leqq x \leqq 5$
この動画を見る 

【高校数学】  数Ⅰ-64  2次不等式③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-8x+16 \gt 0$
②$x^2+6x+9 \geqq 0$
③$-3x^2+12x-13\geqq 0$
この動画を見る 

【高校数学】  数Ⅰ-63  2次不等式②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-4x+2 \leqq 0$
②$-2x^2-4x+5 \lt 0$
③$x^2-3+5\geqq-x-2$
この動画を見る 

【高校数学】  数Ⅰ-62  2次不等式①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2+5x+6 \lt 0$
②$x^2-4x+3 \gt 0$
③$x^2-7x+10 \geqq 0$
④$6x^2-5x+1 \leqq 0$
⑤$x^2-16 \lt 0$
⑥$-2x^2 + 7x+4 \geqq 0$
この動画を見る 

【高校数学】  数Ⅰ-61  2次関数と共有点③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①放物線$y=x^2-3x+3$と直線$y=2x-k$が共有点をもたないように定数kの値の範囲を求めよう。

②放物線$y=x^2-4x+3$と直線$y=2x+k$が接するときの定数kの値を求め、そのときの接点の座標を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-60  2次関数と共有点②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①3点(-2.0).(3.0).(1,12)を通る2次関数を求めよう。

② 2次関数$y=-x^2+3x+3$のグラフがX軸から切り取る線分の長さを求めよう。
この動画を見る 

【高校数学】  数Ⅰ-59  2次関数と共有点①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数のグラフとx軸の共通点の個数を求めよう。

①$y=9x^2-6x+1$
②$y=-x^2+3x-3$
③$y=x^2-4x-5$
この動画を見る 

【高校数学】  数Ⅰ-58  2次方程式⑤

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2つの2次方程式$x^2-5x+3k=0.x^2-3x+2k=0$が共通な解をもつとき、 定数kの値を定め、その共通解を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-57  2次方程式④

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2次方程式$x^2+4x+k=0$が異なる2つの実数解をもつように、定数人の範囲を求めよう。
②2次方程式$x^2+(2k-1)x+k^2-3k-1=0$が実数解をもつように、定数kの範囲を求めよう。
③2次方程式$4x^2+(k+2)x+k-1=0$が重解をもつように、定数kの値を定め、そのとき の重解を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-56  2次方程式③ ・ 判別式編

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2+4x+3=0$
②$5x^2-7x+3=0$
③$4x^2+12x+9=0$
④$3x^2-8x+7=0$
⑤$2x^2-3x-3=0$
⑥$8x^2-20x+11=0$
この動画を見る 

【高校数学】  数Ⅰ-55  2次方程式②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2x^2-5x+1=0$
②$x^2+2x-4=0$
③$\sqrt{ 2 }x^2-4x+2\sqrt{ 2 }=0$
④$(x+2)^2+4(x+2)-1=0$
この動画を見る 

【高校数学】  数Ⅰ-54  2次方程式①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-2x-3=0$
②$x^2+7x=0$
③$5x^2-3=0$
④$4x^2+7x-2=0$
⑤$3x^2+10x+3=0$
⑥$4x^2+8x-21=0$
この動画を見る 

【高校数学】  数Ⅰ-53  特殊な最大・最小②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x.yを変数とするとき、$x^2-4xy+7y^2-4y+3$の最小値とそのときのx、yの値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-52  特殊な最大・最小①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$x \geqq 0 , y \leqq 0,x-2y=3$のとき、$x^2+y^2$の最大値、最小値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-51  2次関数の決定③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす放物線の方程式を求めよう。

①放物線$y=2x^2-3x$を平行移動した曲線で、2点(1.-1)(2.0)を通る。
②放物線$y=x^2-3x+4$を平行移動した曲線で、点(2.4)を通り、頂点が 直線$y=2x+1$上にある。
この動画を見る 

【高校数学】  数Ⅰ-50  2次関数の決定②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2次関数のグラフが次の3点を通るとき、その2次関数を求めよう。

①(-1.-2)(3.18)(-2.3)
②(3.0)(1.4)(-1.0)
この動画を見る 

【高校数学】  数Ⅰ-49  2次関数の決定①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす2次関数を求めよう。

①頂点が(1.-2)で、点(2、-3)を通る。
②グラフの軸がx=-1で、2点(-2.9)(1.3)を通る。
③X=2で最小値-4をとり、X=4のときy=8である。
この動画を見る 

【高校数学】  数Ⅰ-48  2次関数の最大・最小⑦

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2x+y=1$のとき、$x^2+y^2$の最小値を求めよう。
②$x+2y=0$のとき、$xy$の最大値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-47  2次関数の最大・最小⑥ ・ 動く定義域編②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎aは定数とする。関数$y=x^2-4x+5(a \leqq x \leqq a+1)$について。

①最小値を求めよう。
②最大値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-46  2次関数の最大・最小⑤ ・ 動く定義域編①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0$とする。関数$y=x^2-2x-1(0 \leqq x \leqq a)$について。

①最小値を求めよう。
②最大値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-45  2次関数の最大・最小④ ・ 動く軸編

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
aは定数とする。関数$y=x^2-2ax+a(0 \leqq x \leqq 2)$の最大値、最小値を、次の各場合について求めよう。
①$a \leqq 0$
②$0 \lt a \lt 1$
③$a=1$
④$1 \lt a \lt 2$
⑤$a \geqq 2$
この動画を見る 

【高校数学】数Ⅰ-44 2次関数の最大・最小③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$y=3x^2+6x+C(-2 \leqq x \leqq 1)$の最大値が7となるような、定数Cの値を求めよう。
◎xの2次関数$y=x^2+2mx+3m$の最小値をkとする。
②kをmの式で表そう。
③kの値を最大にするmの値と、kの値を求めよう。
この動画を見る 
PAGE TOP