数学(高校生)
数学(高校生)
数検準1級2次過去問【2020年12月】5番:整数問題

単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$boxed{5}$ $m,n\in IN$とする.
(1)$100!=2^m \times (奇数)$と表したときの$m$の値を求めよ.
(2)$50!=n^2\times (互いに異なる素数の積)$と表したときの
素因数分解した形で表せ.
この動画を見る
$boxed{5}$ $m,n\in IN$とする.
(1)$100!=2^m \times (奇数)$と表したときの$m$の値を求めよ.
(2)$50!=n^2\times (互いに異なる素数の積)$と表したときの
素因数分解した形で表せ.
大阪大 対数

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$を自然数とし,$0\lt a \lt 1$とする.
$\log_2 6=m+\dfrac{1}{n+a}$
(1)$m,n$を求めよ.
(2)$a\gt \dfrac{2}{3}$を示せ.
2006大阪大過去問
この動画を見る
$m,n$を自然数とし,$0\lt a \lt 1$とする.
$\log_2 6=m+\dfrac{1}{n+a}$
(1)$m,n$を求めよ.
(2)$a\gt \dfrac{2}{3}$を示せ.
2006大阪大過去問
【数学B】群数列を【3分】でマスターする動画(共通テスト対策)

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学B】群数列の解説動画(共通テスト対策)
この動画を見る
【数学B】群数列の解説動画(共通テスト対策)
数検準1級2次過去問【2020年12月】4番:軌跡と焦点

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#軌跡と領域#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$点$(1,0)$からの距離と
直線$y=2$からの距離の比が$1:2$である点$P$の軌跡の焦点をすべて求めよ.
図は動画内参照
この動画を見る
$\boxed{4}$点$(1,0)$からの距離と
直線$y=2$からの距離の比が$1:2$である点$P$の軌跡の焦点をすべて求めよ.
図は動画内参照
7の45乗の下3桁

微分方程式⑦-1【2階微分方程式の一般解を求める】(高専数学、数検1級)
単元:
#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
2階微分方程式の一般解である.これを解け.
(1)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}-4x=0$
(2)$\dfrac{d^2x}{dt^2}+10\dfrac{dx}{dt}+25x=0$
(3)$\dfrac{d^2x}{dt^2}-4\dfrac{dx}{dt}+6x=0$
この動画を見る
2階微分方程式の一般解である.これを解け.
(1)$\dfrac{d^2x}{dt^2}+3\dfrac{dx}{dt}-4x=0$
(2)$\dfrac{d^2x}{dt^2}+10\dfrac{dx}{dt}+25x=0$
(3)$\dfrac{d^2x}{dt^2}-4\dfrac{dx}{dt}+6x=0$
【高校数学】2次関数の決定~考え方と解き方~ 2-6【数学Ⅰ】

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
(1) 頂点が点 (1,2) で、点 (3,6) を通る。
(2) 軸が$x$=-1で、2点(1,3) 、(-2,-3) を通る。
(3)3点(1,4), (3,2) (-2,-8)
この動画を見る
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
(1) 頂点が点 (1,2) で、点 (3,6) を通る。
(2) 軸が$x$=-1で、2点(1,3) 、(-2,-3) を通る。
(3)3点(1,4), (3,2) (-2,-8)
05愛知県教員採用試験(数学:1番 気合の式変形)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}$ $x^2-x-1=0$の解を$\alpha,\beta(\alpha\gt \beta)$とする.
(1)$\alpha^{n+2}-\beta^{n+2}=\alpha^{n+1}-\beta^{n+1}+\alpha^n-\beta^n$を示せ.
$(n\in IN)$
(2)$\alpha^7-\beta^7$の値を求めよ.
この動画を見る
$\boxed{1}$ $x^2-x-1=0$の解を$\alpha,\beta(\alpha\gt \beta)$とする.
(1)$\alpha^{n+2}-\beta^{n+2}=\alpha^{n+1}-\beta^{n+1}+\alpha^n-\beta^n$を示せ.
$(n\in IN)$
(2)$\alpha^7-\beta^7$の値を求めよ.
東大 確率ジャンケン

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3$人でじゃんけんをして$k$回目に$1$人の勝者が決まる確率を求めよ.
※負けた人は次以降参加しない.
1971東大過去問
この動画を見る
$3$人でじゃんけんをして$k$回目に$1$人の勝者が決まる確率を求めよ.
※負けた人は次以降参加しない.
1971東大過去問
数検準1級1次過去問【2020年12月】2番:三角関数

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$ $\sin\theta+\cos\theta=\dfrac{1}{3}$のとき,
$\sin^3\theta+\cos^3\theta$の値を求めよ.
この動画を見る
$\boxed{2}$ $\sin\theta+\cos\theta=\dfrac{1}{3}$のとき,
$\sin^3\theta+\cos^3\theta$の値を求めよ.
数検準1級1次過去問【2020年12月】4番:複素数

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4} \alpha=-2+i$で,$\beta=-3-i$である.これを解け.
(1)$\left| \dfrac{\alpha}{\beta} \right|$を求めよ.
(2)$\left( -\frac{\alpha}{\beta} \right)^{45}$の偏角$\theta$を求めよ.
$(0\leqq \theta \lt 2\pi)$
この動画を見る
$\boxed{4} \alpha=-2+i$で,$\beta=-3-i$である.これを解け.
(1)$\left| \dfrac{\alpha}{\beta} \right|$を求めよ.
(2)$\left( -\frac{\alpha}{\beta} \right)^{45}$の偏角$\theta$を求めよ.
$(0\leqq \theta \lt 2\pi)$
数検準1級1次過去問【2020年12月】3番:三角形の面積(ベクトル)

単元:
#数Ⅰ#数学検定・数学甲子園・数学オリンピック等#図形と計量#三角比への応用(正弦・余弦・面積)#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{3}$ $0(0,0,0),A(-2,1,1)B(-1,2,0)$を頂点に持つ
$\triangle{OAB}$の面積$S$を求めよ.
この動画を見る
$\boxed{3}$ $0(0,0,0),A(-2,1,1)B(-1,2,0)$を頂点に持つ
$\triangle{OAB}$の面積$S$を求めよ.
千葉大 漸化式

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数$n\geqq 2$であり,$a_n=\dfrac{(1+\sqrt3)^n+(1-\sqrt3)^n}{4}$である.
$a_n$は整数であり,$a_n$を$3$で割った余りは$2$であることを示せ.
2013千葉大過去問
この動画を見る
整数$n\geqq 2$であり,$a_n=\dfrac{(1+\sqrt3)^n+(1-\sqrt3)^n}{4}$である.
$a_n$は整数であり,$a_n$を$3$で割った余りは$2$であることを示せ.
2013千葉大過去問
「二次不等式の解の配置②」【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2-2ax-2a+3=0$が次のような解をもつとき、定数$a$の値の範囲を求めよ。
(1)異なる2つの正の解をもつ
(2)異なる2つの負の解をもつ
(3)$x \lt -2$の範囲に異なる2解をもつ
(4)$-1 \leqq x \leqq 2$の範囲に異なる2つの解をもつ
(5)正の解と負の解をそれぞれ1つずつもつ
(6)$0 \lt x \lt 2,2 \lt x \lt 4$の範囲に1つずつ解をもつ
(7)$-2 \leqq x \leqq 1,3 \leqq x \leqq 5$の範囲に1つずつ解をもつ
(8)2解のうちの1つを$1 \lt x \lt 5$の範囲にもつ
(9)$-4 \leqq x \leqq -2$の範囲に解をもつ
この動画を見る
2次方程式$x^2-2ax-2a+3=0$が次のような解をもつとき、定数$a$の値の範囲を求めよ。
(1)異なる2つの正の解をもつ
(2)異なる2つの負の解をもつ
(3)$x \lt -2$の範囲に異なる2解をもつ
(4)$-1 \leqq x \leqq 2$の範囲に異なる2つの解をもつ
(5)正の解と負の解をそれぞれ1つずつもつ
(6)$0 \lt x \lt 2,2 \lt x \lt 4$の範囲に1つずつ解をもつ
(7)$-2 \leqq x \leqq 1,3 \leqq x \leqq 5$の範囲に1つずつ解をもつ
(8)2解のうちの1つを$1 \lt x \lt 5$の範囲にもつ
(9)$-4 \leqq x \leqq -2$の範囲に解をもつ
数検準1級2次過去問【2020年12月】7番:微積 良問

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}\ f(x)=\dfrac{\sin x+a}{x}$ $(x \gt 0)$は$0\lt x\lt 2\pi$で極値をもつ.
(1)$a$の値の範囲を求めよ.
(2)$f(x)$が$o\lt x\lt 2\pi$で、極大値$\dfrac{1}{2}$をもつとき,$a$の値を求めよ.
この動画を見る
$\boxed{7}\ f(x)=\dfrac{\sin x+a}{x}$ $(x \gt 0)$は$0\lt x\lt 2\pi$で極値をもつ.
(1)$a$の値の範囲を求めよ.
(2)$f(x)$が$o\lt x\lt 2\pi$で、極大値$\dfrac{1}{2}$をもつとき,$a$の値を求めよ.
【数A】場合の数:完全順列! 5人に招待状を送るため、あて名を書いた招待状と、それを入れるあて名を書いた封筒を作成した。招待状を間違った封筒に入れる方法は何通りあるか。

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
5人に招待状を送るため、あて名を書いた招待状と、それを入れるあて名を書いた封筒を作成した。招待状を間違った封筒に入れる方法は何通りあるか。
この動画を見る
5人に招待状を送るため、あて名を書いた招待状と、それを入れるあて名を書いた封筒を作成した。招待状を間違った封筒に入れる方法は何通りあるか。
【数A】場合の数:塗り分け! ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。
この動画を見る
ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。
【数A】場合の数:出目の積! 大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。
この動画を見る
大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。
山形大 積分

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a\gt 0$である.
$f(x)=x^4-6a^2x^2+5a^4(a,0)$における接線$\ell$と$f(x)$とで囲まれる面積を求めよ.
山形大過去問
この動画を見る
$a\gt 0$である.
$f(x)=x^4-6a^2x^2+5a^4(a,0)$における接線$\ell$と$f(x)$とで囲まれる面積を求めよ.
山形大過去問
【共通テスト】数学IA 第1問を瞬時に解くテクニックを解説します(H30試行調査)

数検準1級2次過去問【2020年12月】2番:数列

単元:
#数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$ $a_1=10,a_{n+1}=\sqrt[5]{a_n}$である.
(1)一般項$a_n$を求めよ.
(2)$P_n=a_1 \times \cdots \times a_n$を求めよ.
この動画を見る
$\boxed{2}$ $a_1=10,a_{n+1}=\sqrt[5]{a_n}$である.
(1)一般項$a_n$を求めよ.
(2)$P_n=a_1 \times \cdots \times a_n$を求めよ.
福井大(医)漸化式

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.
福井大(医)過去問
この動画を見る
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.
福井大(医)過去問
【最後の確認】総まとめ!―内心_外心_重心_垂心_傍心【数学A】【五心】

「二次不等式の解の配置①」【高校数学ⅠA】を宇宙一わかりやすく

単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2-2ax-2a+3=0$が次のような解をもつとき、定数$a$の値の範囲を求めよ。
(1)異なる2つの正の解をもつ
(2)異なる2つの負の解をもつ
(3)$x \lt -2$の範囲に異なる2解をもつ
(4)$-1 \leqq x \leqq 2$の範囲に異なる2つの解をもつ
(5)正の解と負の解をそれぞれ1つずつもつ
(6)$0 \lt x \lt 2,2 \lt x \lt 4$の範囲に1つずつ解をもつ
(7)$-2 \leqq x \leqq 1,3 \leqq x \leqq 5$の範囲に1つずつ解をもつ
(8)2解のうちの1つを$1 \lt x \lt 5$の範囲にもつ
(9)$-4 \leqq x \leqq -2$の範囲に解をもつ
この動画を見る
2次方程式$x^2-2ax-2a+3=0$が次のような解をもつとき、定数$a$の値の範囲を求めよ。
(1)異なる2つの正の解をもつ
(2)異なる2つの負の解をもつ
(3)$x \lt -2$の範囲に異なる2解をもつ
(4)$-1 \leqq x \leqq 2$の範囲に異なる2つの解をもつ
(5)正の解と負の解をそれぞれ1つずつもつ
(6)$0 \lt x \lt 2,2 \lt x \lt 4$の範囲に1つずつ解をもつ
(7)$-2 \leqq x \leqq 1,3 \leqq x \leqq 5$の範囲に1つずつ解をもつ
(8)2解のうちの1つを$1 \lt x \lt 5$の範囲にもつ
(9)$-4 \leqq x \leqq -2$の範囲に解をもつ
重積分④-1【積分順序の変更】(高専数学 微積II,数学検定1級解析)
単元:
#数Ⅱ#積分とその応用#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
積分順序を変更せよ.
(1)$\displaystyle \int_{0}^{1} \displaystyle \int_{x^2}^{x} f(x,y)dy \ dx$
(2)$\displaystyle \int_{0}^{1} \displaystyle \int_{x}^{3x} f(x,y)dy \ dx$
この動画を見る
積分順序を変更せよ.
(1)$\displaystyle \int_{0}^{1} \displaystyle \int_{x^2}^{x} f(x,y)dy \ dx$
(2)$\displaystyle \int_{0}^{1} \displaystyle \int_{x}^{3x} f(x,y)dy \ dx$
【数Ⅱ】式と証明:実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材:
#クリアー数学#クリアー数学Ⅱ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。
この動画を見る
実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。
東工大 指数関数の接線の本数

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=e^x$に$(a,b)$から何本の接線が引けるか.
1980東工大過去問
この動画を見る
$y=e^x$に$(a,b)$から何本の接線が引けるか.
1980東工大過去問
数検準1級2次過去問【2020年12月】3番:合成関数

単元:
#数学検定・数学甲子園・数学オリンピック等#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
3⃣ $0 \leqq x \leqq 4$
$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2 (0 \leqq x < 2) \\
-2x+8(2 \leqq x \leqq 4)
\end{array}
\right.
\end{eqnarray}$
(1)$f(f(x)) (0 \leqq x \leqq 4)$を求めよ。
(2)$f(f(x))=x$をみたすxをすべて求めよ。
この動画を見る
3⃣ $0 \leqq x \leqq 4$
$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2 (0 \leqq x < 2) \\
-2x+8(2 \leqq x \leqq 4)
\end{array}
\right.
\end{eqnarray}$
(1)$f(f(x)) (0 \leqq x \leqq 4)$を求めよ。
(2)$f(f(x))=x$をみたすxをすべて求めよ。
徳島大(医)放物線の法線

単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C:y=x^2$上の$P(t,t^2)(t\gt 0)$における法線と$C$との交点を$Q(\neq P)$とする.
$PQ$の最小値を求めよ.
2020徳島大(医)過去問
この動画を見る
$C:y=x^2$上の$P(t,t^2)(t\gt 0)$における法線と$C$との交点を$Q(\neq P)$とする.
$PQ$の最小値を求めよ.
2020徳島大(医)過去問
数検準1級1次過去問【2020年12月】5番:極方程式

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#媒介変数表示と極座標#数学検定#数学検定準1級#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
5⃣ 極方程式
r=4sinθ+6cosθ
で表される図形を求めよ。
この動画を見る
5⃣ 極方程式
r=4sinθ+6cosθ
で表される図形を求めよ。
