京都大学
【理数個別の過去問解説】1993年度京都大学 数学 理系後期第5問解説
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$n\geqq 3$とする。$1,2,...,n$のうちから重複を許して6個の数字を選びそれらを並べた順列を考える。このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよう。
この動画を見る
$n\geqq 3$とする。$1,2,...,n$のうちから重複を許して6個の数字を選びそれらを並べた順列を考える。このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよう。
【理数個別の過去問解説】2012年度京都大学 数学 第3問解説
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
京都大学(文理共通)2012年第3問
実数x,yが条件x²+xy+y²=6を満たしながら動くとき、x²y+xy²-x²-2xy-y²+x+y がとりうる値の範囲を求めよ。
この動画を見る
京都大学(文理共通)2012年第3問
実数x,yが条件x²+xy+y²=6を満たしながら動くとき、x²y+xy²-x²-2xy-y²+x+y がとりうる値の範囲を求めよ。
【理数個別の過去問解説】2016年度京都大学 数学 文系第1問解説
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
京都大学(文系)2016年第1問
xy平面内の領域 $x²+y²≦2, |x|≦1$で,曲線$C:y=x³+x²-x $の上側にある部分の面積を求めよ。
この動画を見る
京都大学(文系)2016年第1問
xy平面内の領域 $x²+y²≦2, |x|≦1$で,曲線$C:y=x³+x²-x $の上側にある部分の面積を求めよ。
【数B】数列:京大数学を5分以内に解説! 先頭から順に1~nの番号がついたn両編成の列車がある。 各車両を赤青黄のいずれか1色で塗るとき、隣合った車両の少なくとも一方が赤となる色の塗り方は?
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
先頭車両から順に1からnまでの番号がついたn両編成の列車がある。ただしn≧2とする。 各車両を赤色、青色、黄色のいずれか1色で塗るとき、隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。
この動画を見る
先頭車両から順に1からnまでの番号がついたn両編成の列車がある。ただしn≧2とする。 各車両を赤色、青色、黄色のいずれか1色で塗るとき、隣り合った車両の少なくとも一方が赤色となるような色の塗り方は何通りか。
京都大 三次方程式の解
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$k\gt 0$であるとする.
$x(x+3)(x-3)+3k(x+1)(x-1)=0$が3つ実数解をもつことを示せ.
1967京都大(文理共通)過去問
この動画を見る
$k\gt 0$であるとする.
$x(x+3)(x-3)+3k(x+1)(x-1)=0$が3つ実数解をもつことを示せ.
1967京都大(文理共通)過去問
京都大(文)4次方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^4-x^3+x^2-(a+2)x-a-3=0$が虚軸上の解をもつ実数$a$を求めよ
出典:2001年京都大学 大学院文学研究科 過去問
この動画を見る
$x^4-x^3+x^2-(a+2)x-a-3=0$が虚軸上の解をもつ実数$a$を求めよ
出典:2001年京都大学 大学院文学研究科 過去問
京都大 三角関数 4倍角の公式 最大値・最小値
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(\theta)=\cos4\theta-4\sin^2\theta$
$0 \leqq \theta \leqq \displaystyle \frac{3}{4}\pi$における$f(\theta)$の最大値・最小値を求めよ
出典:2004年京都大学 過去問
この動画を見る
$f(\theta)=\cos4\theta-4\sin^2\theta$
$0 \leqq \theta \leqq \displaystyle \frac{3}{4}\pi$における$f(\theta)$の最大値・最小値を求めよ
出典:2004年京都大学 過去問
京都大 確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1~5$の数を等確率で入れて$n$桁の整数を作る
$X$が3で割り切れる確率を求めよ
出典:2017年京都大学 過去問
この動画を見る
$1~5$の数を等確率で入れて$n$桁の整数を作る
$X$が3で割り切れる確率を求めよ
出典:2017年京都大学 過去問
京都大(改)良問再投稿 3で割った余りを秒で出す
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x^{2020}+1)^{2020}+(x^2+1)^{2020}+1$を$x^2+x+1$で割った余りを求めよ
出典:京都大学 過去問
この動画を見る
$(x^{2020}+1)^{2020}+(x^2+1)^{2020}+1$を$x^2+x+1$で割った余りを求めよ
出典:京都大学 過去問
京都大 三次方程式の解
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x(x-3)(x+3)+3k(x-1)(x+1)=0$ $(k \gt 0)$
(1)
3つの実数解をもつことを示せ
(2)
ただ1つの正の解が$1$と$1+\displaystyle \frac{2}{k}$の間にあることを示せ
出典:1967年京都大学 過去問
この動画を見る
$x(x-3)(x+3)+3k(x-1)(x+1)=0$ $(k \gt 0)$
(1)
3つの実数解をもつことを示せ
(2)
ただ1つの正の解が$1$と$1+\displaystyle \frac{2}{k}$の間にあることを示せ
出典:1967年京都大学 過去問
京都大 三次関数 積分
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8$
$0 \leqq x \leqq r$における$|f(x)|$の最大値を$M(r)$とする。
$\displaystyle \int_{0}^{5} M(r) dr$を求めよ
出典:1966年京都大学 過去問
この動画を見る
$f(x)=x^3-6x^2+8$
$0 \leqq x \leqq r$における$|f(x)|$の最大値を$M(r)$とする。
$\displaystyle \int_{0}^{5} M(r) dr$を求めよ
出典:1966年京都大学 過去問
京都大学 三次方程式の解
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+x-8=0$はただ1つの実根を1と2の間にもち、それが無理数であることを示せ
出典:1966年京都大学 過去問
この動画を見る
$x^3+x-8=0$はただ1つの実根を1と2の間にもち、それが無理数であることを示せ
出典:1966年京都大学 過去問
京都大 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+2y^2+2z^2-2xy-2xz+2yz-5=0$をみたす正の整数の組$(x,y,z)$を求めよ
出典:2001年京都大学 過去問
この動画を見る
$x^2+2y^2+2z^2-2xy-2xz+2yz-5=0$をみたす正の整数の組$(x,y,z)$を求めよ
出典:2001年京都大学 過去問
京都大 n進法
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n \geqq 4$自然数
$2,12,1331$はすべて$n$進法で表記されている
$2^{12}=1331$
$n$を十進法で求めよ
出典:2016年京都大学 過去問
この動画を見る
$n \geqq 4$自然数
$2,12,1331$はすべて$n$進法で表記されている
$2^{12}=1331$
$n$を十進法で求めよ
出典:2016年京都大学 過去問
京都大 3次関数 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
この動画を見る
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ
出典:2019年京都大学 過去問
京都大 確率 確率でも検算できるぞ
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1~n$まで番号の書かれた札が各2枚ずつある。$(n \geqq 3)$
[1][1][2][2]…[n][n]
2$n$枚から3枚選んで順に$x_1,x_2,x_3$とする。
$x_1 \lt x_2 \lt x_3$となる確率は?
出典:2012年京都大学 過去問
この動画を見る
$1~n$まで番号の書かれた札が各2枚ずつある。$(n \geqq 3)$
[1][1][2][2]…[n][n]
2$n$枚から3枚選んで順に$x_1,x_2,x_3$とする。
$x_1 \lt x_2 \lt x_3$となる確率は?
出典:2012年京都大学 過去問
京都大 合成関数 不等式
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ
出典:2013年京都大学 過去問
この動画を見る
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ
出典:2013年京都大学 過去問
京都大 関数
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$
すべての実数$x$にたいして不等式
$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ
出典:2014年京都大学 過去問
この動画を見る
$a,b$実数
$f(x)=\displaystyle \frac{ax+b}{x^2+x+1}$
すべての実数$x$にたいして不等式
$f(x) \leqq f(x)^3-2f(x)^2+2$が成り立つ$(a,b)$を図示せよ
出典:2014年京都大学 過去問
京都大学 サイコロ確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率
(2)
$x=5$となる確率
出典:2017年京都大学 過去問
この動画を見る
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率
(2)
$x=5$となる確率
出典:2017年京都大学 過去問
京都大 絶対値のついた二次関数の共有点 東大数学科院卒 杉山聡
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=|x^2-2|$と$y=|2x^2+ax-1|$の共有点の個数を求めよ
出典:京都大学 過去問
この動画を見る
$y=|x^2-2|$と$y=|2x^2+ax-1|$の共有点の個数を求めよ
出典:京都大学 過去問
京都大 確率 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
出た目の最大値を$M_{n}$
最小値を$m_{n}$とする
$M_{n}-m_{n} \gt 1$となる確率を求めよ
出典:1986年京都大学 過去問
この動画を見る
出た目の最大値を$M_{n}$
最小値を$m_{n}$とする
$M_{n}-m_{n} \gt 1$となる確率を求めよ
出典:1986年京都大学 過去問
京都大 三角関数 3次関数 解の個数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$
$\cos 3\theta - \cos 2\theta+3\cos\theta-1=a$を満たす$\theta$の個数
出典:京都大学 過去問
この動画を見る
$0 \leqq \theta \lt 2\pi$
$\cos 3\theta - \cos 2\theta+3\cos\theta-1=a$を満たす$\theta$の個数
出典:京都大学 過去問
京都大 漸化式 超基本問題 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$
出典:2002年京都大学 過去問
この動画を見る
$a_{1}=0,$ $a_{2}=1$ 一般項を求めよ
$(n-1)^2a_{n}=S_{n}(n \geqq 1)$
出典:2002年京都大学 過去問
京都大 4次方程式 整数問題 Mathematics Japanese university entrance exam
単元:
#数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数係数の4次方程式
$x^4+ax^3+bx^2+cx+1=0$
重複も込めた4つの解は、整数2つ虚数2つである。
$a,b,c$の値を求めよ
出典:2002年京都大学 過去問
この動画を見る
整数係数の4次方程式
$x^4+ax^3+bx^2+cx+1=0$
重複も込めた4つの解は、整数2つ虚数2つである。
$a,b,c$の値を求めよ
出典:2002年京都大学 過去問
京都大 3次方程式 実数解1つである証明 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)$は3次式、$f(x)$を導関数$f'(x)$で割った余りが定数である。
$f(x)=0$はただ1つの実数解をもつことを示せ
出典:1989年京都大学 過去問
この動画を見る
$f(x)$は3次式、$f(x)$を導関数$f'(x)$で割った余りが定数である。
$f(x)=0$はただ1つの実数解をもつことを示せ
出典:1989年京都大学 過去問
京都大 放物線と線分の長さ Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
この動画を見る
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
京都大 4次方程式の解の個数 Mathematics Japanese university entrance exam Kyoto University
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x^2+ax+1)(3x^2+ax-3)=0$
この方程式の実数解の個数は?
出典:2008年京都大学 過去問
この動画を見る
$(x^2+ax+1)(3x^2+ax-3)=0$
この方程式の実数解の個数は?
出典:2008年京都大学 過去問
京都大 整数問題 高校数学 Mathematics Japanese university entrance exam Kyoto University
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
05年 京都大学過去問
a,bは整数で、$a^3-b^3=65$を満たす$(a,b)$を全て求めよ
この動画を見る
05年 京都大学過去問
a,bは整数で、$a^3-b^3=65$を満たす$(a,b)$を全て求めよ
京都大 5倍角 高校数学 Mathematics Japanese university entrance exam Kyoto University
単元:
#大学入試過去問(数学)#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。
(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
この動画を見る
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。
(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
京都大学 整数問題 Mathematics Japanese university entrance exam Kyoto University
単元:
#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2018年 国立大学法人京都大学
$n^3-7n+9$が素数となる整数$n$を求めよ。
この動画を見る
2018年 国立大学法人京都大学
$n^3-7n+9$が素数となる整数$n$を求めよ。