学校別大学入試過去問解説(数学)
福田の数学〜慶應義塾大学2021年薬学部第1問(3)〜アポロニウスの円と面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)xy平面上において、点Pは2点A(0,0),\ B(7,0)に対してAP:BP=3:4\\
を満たす。\\
(\textrm{i})点Pの軌跡の方程式は\boxed{\ \ エ\ \ }である。\\
(\textrm{ii})点Pの軌跡を境界線とする2つの領域のうち、点Aを含む領域と、\\
不等式y \leqq \sqrt3|x+9|の表す領域の共通部分の面積は\boxed{\ \ オ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (3)xy平面上において、点Pは2点A(0,0),\ B(7,0)に対してAP:BP=3:4\\
を満たす。\\
(\textrm{i})点Pの軌跡の方程式は\boxed{\ \ エ\ \ }である。\\
(\textrm{ii})点Pの軌跡を境界線とする2つの領域のうち、点Aを含む領域と、\\
不等式y \leqq \sqrt3|x+9|の表す領域の共通部分の面積は\boxed{\ \ オ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
数学「大学入試良問集」【19−1 三角関数のグラフと面積】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \leqq x \leqq 2\pi$における2つの関数$y=\cos\ x$と$y=\sin2x$について、次の各問いに答えよ。
(1)2つの関数のグラフの交点の$x$座標をすべて求めよ。
(2)2つの関数のグラフの概形をかけ。
(3)2つの関数のグラフだけによって囲まれている部分の面積を求めよ。
この動画を見る
$0 \leqq x \leqq 2\pi$における2つの関数$y=\cos\ x$と$y=\sin2x$について、次の各問いに答えよ。
(1)2つの関数のグラフの交点の$x$座標をすべて求めよ。
(2)2つの関数のグラフの概形をかけ。
(3)2つの関数のグラフだけによって囲まれている部分の面積を求めよ。
福田の数学〜慶應義塾大学2021年薬学部第1問(2)〜解の差が1の2次方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)xの関数f(x)=x^2+ax+bがある。方程式f(x)=0の2つの実数解の差が\\
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が\frac{13}{2}であるとき、\\
aの値は\ \boxed{\ \ イ\ \ }、bの値は\ \boxed{\ \ ウ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)xの関数f(x)=x^2+ax+bがある。方程式f(x)=0の2つの実数解の差が\\
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が\frac{13}{2}であるとき、\\
aの値は\ \boxed{\ \ イ\ \ }、bの値は\ \boxed{\ \ ウ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(1)〜ド・モアブルの定理
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ (1+i)^{10}を展開して得られる複素数は\ \boxed{\ \ ア\ \ }\ である。ただし、iは虚数単位とする。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)\ (1+i)^{10}を展開して得られる複素数は\ \boxed{\ \ ア\ \ }\ である。ただし、iは虚数単位とする。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
数学「大学入試良問集」【18−12 絶対値を含む定積分の最大最小】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x-\sin^2\theta|\sin\theta\ d\ \theta$の$0 \leqq x \leqq 1$における最大値と最小値を求めよ。
この動画を見る
関数$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x-\sin^2\theta|\sin\theta\ d\ \theta$の$0 \leqq x \leqq 1$における最大値と最小値を求めよ。
福田の数学〜慶應義塾大学2021年総合政策学部第6問〜期待値から経営戦略を立てる
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} A社はB氏を報酬wで雇っている(wは正の実数)。A社の売り上げはB氏の努力水準に\\
依存しており、B氏の努力水準が低いとA社の売り上げは200だが、B氏の努力水準が\\
高い場合、A社の売り上げは70%の確率で500となり、30%の確率で200のままとなる。\\
そして、このことはB氏も知っている。ただし、B氏は努力水準を高める際に17.5の\\
苦痛を感じる。そのため、報酬wの下で努力水準を高めると、B氏の実質的な報酬は\\
w-17.5となってしまう。B氏は完全にテレワークをしており、B氏の努力水準を\\
A社が直接知ることはできないし、B氏が努力水準を高めるように強制することも\\
できない。するとw \gt w-17.5であることから、B氏は努力水準を高めないことが\\
合理的な行動となる。\\
以下では、不確実性下の意思決定を扱っているが(1),(2),(3)のいずれにおいても、\\
A社、B氏共に期待値の大小のみに関心があるものと仮定して解答すること。\\
\\
(1)いま、A社は売上が500になったあときにはB氏の報酬をw_1に引き上げ、200のとき\\
にはw_0に据え置くアイデアを思いついた。B氏が努力水準を高めるには、\\
w_1 \geqq w_0+\boxed{\ \ アイウ\ \ }.\boxed{\ \ エオ\ \ }である必要がある。\\
\\
次に、B氏は、A社をやめても他の会社に報酬100で雇われることが可能であるとする。\\
(2)A社の利潤を売上からB氏への報酬を引いた残りだと単純化すると、w_1とw_0を適切に\\
定めることにより、B氏にA社をやめさせず、かつ努力水準を高めさせるためには、\\
A社の利潤の期待値を\boxed{\ \ カキク\ \ }.\boxed{\ \ ケコ\ \ }以下とする必要がある。\\
また、A社の利潤の期待値が最大化された時、w_1:w_0=5:4を満たすw_0の値は\\
\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }\\
\\
以下では、B氏のw_0の値をこのw_0の値をこの\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }とする。\\
(3)実は、B氏の関心は報酬wそのものではなく、そこから得られる満足と解釈される\\
10\sqrt wであることが分かった。そのため、努力水準を高める際の苦痛17.5もこの値\\
から差し引かれ、努力水準を高めたときのB氏の満足は10\sqrt w-17.5となる。\\
B氏は(実質的な)報酬を最大化する人ではなく、満足を最大化する人だとしたとき、\\
B氏にA社をやめさせず、かつ努力水準を高めさせえるためには、w_1 \geqq \boxed{\ \ タチツ\ \ }.\boxed{\ \ テト\ \ }\\
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}} A社はB氏を報酬wで雇っている(wは正の実数)。A社の売り上げはB氏の努力水準に\\
依存しており、B氏の努力水準が低いとA社の売り上げは200だが、B氏の努力水準が\\
高い場合、A社の売り上げは70%の確率で500となり、30%の確率で200のままとなる。\\
そして、このことはB氏も知っている。ただし、B氏は努力水準を高める際に17.5の\\
苦痛を感じる。そのため、報酬wの下で努力水準を高めると、B氏の実質的な報酬は\\
w-17.5となってしまう。B氏は完全にテレワークをしており、B氏の努力水準を\\
A社が直接知ることはできないし、B氏が努力水準を高めるように強制することも\\
できない。するとw \gt w-17.5であることから、B氏は努力水準を高めないことが\\
合理的な行動となる。\\
以下では、不確実性下の意思決定を扱っているが(1),(2),(3)のいずれにおいても、\\
A社、B氏共に期待値の大小のみに関心があるものと仮定して解答すること。\\
\\
(1)いま、A社は売上が500になったあときにはB氏の報酬をw_1に引き上げ、200のとき\\
にはw_0に据え置くアイデアを思いついた。B氏が努力水準を高めるには、\\
w_1 \geqq w_0+\boxed{\ \ アイウ\ \ }.\boxed{\ \ エオ\ \ }である必要がある。\\
\\
次に、B氏は、A社をやめても他の会社に報酬100で雇われることが可能であるとする。\\
(2)A社の利潤を売上からB氏への報酬を引いた残りだと単純化すると、w_1とw_0を適切に\\
定めることにより、B氏にA社をやめさせず、かつ努力水準を高めさせるためには、\\
A社の利潤の期待値を\boxed{\ \ カキク\ \ }.\boxed{\ \ ケコ\ \ }以下とする必要がある。\\
また、A社の利潤の期待値が最大化された時、w_1:w_0=5:4を満たすw_0の値は\\
\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }\\
\\
以下では、B氏のw_0の値をこのw_0の値をこの\boxed{\ \ サシス\ \ }.\boxed{\ \ セソ\ \ }とする。\\
(3)実は、B氏の関心は報酬wそのものではなく、そこから得られる満足と解釈される\\
10\sqrt wであることが分かった。そのため、努力水準を高める際の苦痛17.5もこの値\\
から差し引かれ、努力水準を高めたときのB氏の満足は10\sqrt w-17.5となる。\\
B氏は(実質的な)報酬を最大化する人ではなく、満足を最大化する人だとしたとき、\\
B氏にA社をやめさせず、かつ努力水準を高めさせえるためには、w_1 \geqq \boxed{\ \ タチツ\ \ }.\boxed{\ \ テト\ \ }\\
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
数学「大学入試良問集」【18−11 分数関数の極値と面積】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{x^2+ax+b}{x-1}$は$x=2$で極小値5をとる。
このとき、次の各問いに答えよ。
(1)$a,b$の値を求めよ。
(2)関数$y=f(x)$のグラフ上の$x=3$に対応する点における接線の方程式を求めよ。
(3)直線$x=2$、曲線$y=f(x)$および$(2)$で求めた接線で囲まれた部分の面積を求めよ。
この動画を見る
関数$f(x)=\displaystyle \frac{x^2+ax+b}{x-1}$は$x=2$で極小値5をとる。
このとき、次の各問いに答えよ。
(1)$a,b$の値を求めよ。
(2)関数$y=f(x)$のグラフ上の$x=3$に対応する点における接線の方程式を求めよ。
(3)直線$x=2$、曲線$y=f(x)$および$(2)$で求めた接線で囲まれた部分の面積を求めよ。
福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} (1)\ 同じ人形\ n\ 体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。\\
例えばn=10のとき、下図(※動画参照)のような並べ方がある。\\
\\
\\
ここで、n体の人形の並べ方の総数をa_nとすると\\
a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。\\
\\
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。\\
その並べ方の総数をb_nとすると\\
b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
\end{eqnarray}
2021慶應義塾大学整合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}} (1)\ 同じ人形\ n\ 体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。\\
例えばn=10のとき、下図(※動画参照)のような並べ方がある。\\
\\
\\
ここで、n体の人形の並べ方の総数をa_nとすると\\
a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。\\
\\
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。\\
その並べ方の総数をb_nとすると\\
b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
\end{eqnarray}
2021慶應義塾大学整合政策学部過去問
福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} aを正の実数、bを1より大きい実数としたとき、放物線y=-ax^2+bが、\\
下図(※動画参照)のように原点を中心とした半径1の円x^2+y^2=1と2箇所で\\
接している。(すなわち共有点において共通の接線を持つ)\\
\\
(1)一般に、b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}\ である。\\
\\
(2)特に、a=\frac{\sqrt2}{2}とすると、放物線と円の接点は\\
(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})\\
であり、円と放物線に囲まれた上図の斜線部の面積は\\
\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}\ となる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} aを正の実数、bを1より大きい実数としたとき、放物線y=-ax^2+bが、\\
下図(※動画参照)のように原点を中心とした半径1の円x^2+y^2=1と2箇所で\\
接している。(すなわち共有点において共通の接線を持つ)\\
\\
(1)一般に、b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}\ である。\\
\\
(2)特に、a=\frac{\sqrt2}{2}とすると、放物線と円の接点は\\
(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})\\
であり、円と放物線に囲まれた上図の斜線部の面積は\\
\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}\ となる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
【数A】整数の性質:日本医科大学 不等式で絞る
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)5つの実数の総和が1であるならば、これらのうち少なくとも1つは$\dfrac{1}{5}$以上で あることを証明しよう。
(2)(1)の結果を利用して、$x_1+x_2+x_3+x_4+x_5=x_1・x_2・x_3・ x_4・x_5$を満たす正の整数$x_1,x_2,x_3,x_4,x_5$(ただし、 $x_1≦x_2≦x_3≦x_4≦x_5$)の組をすべて求めよう。
この動画を見る
(1)5つの実数の総和が1であるならば、これらのうち少なくとも1つは$\dfrac{1}{5}$以上で あることを証明しよう。
(2)(1)の結果を利用して、$x_1+x_2+x_3+x_4+x_5=x_1・x_2・x_3・ x_4・x_5$を満たす正の整数$x_1,x_2,x_3,x_4,x_5$(ただし、 $x_1≦x_2≦x_3≦x_4≦x_5$)の組をすべて求めよう。
福田の数学〜慶應義塾大学2021年総合政策学部第3問〜円と円の位置関係
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。\\
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A\\
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。\\
いま、円Bの半径を1とすると、円Cの半径は\\
\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\\
である。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。\\
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A\\
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。\\
いま、円Bの半径を1とすると、円Cの半径は\\
\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\\
である。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
【理数個別の過去問解説】2016年度京都大学 数学 理系第2問解説
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
京都大学(理系)
2016年度(前期)第2問
p,qを素数とする。このとき$p^q+q^p$が素数となるようなp,qの値の組を全て求めよ。
この動画を見る
京都大学(理系)
2016年度(前期)第2問
p,qを素数とする。このとき$p^q+q^p$が素数となるようなp,qの値の組を全て求めよ。
福田の数学〜慶應義塾大学2021年総合政策学部第1問〜ソーシャルディスタンスを保つ座り方の確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)ある公園に、図のように(※動画参照)10個の丸い椅子が、\\
東側に5個横一列に、西側に5個一列に、それぞれ1m間隔で置かれている。また東側の\\
椅子と西側の椅子は2つずつ背中合わせに置かれていて、その間隔は1mとなっている。\\
Aさんはいつも東側の椅子のいずれかに、Bさんは西側の椅子のいずれかに、\\
同じ確率で座る。このとき、AさんとBさんの座る日値がソーシャルディスタンスの\\
2m以上である確率は\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}である。\\
なお、AさんもBさんも椅子の中心に座り、ソーシャルディスタンスは座っている\\
椅子の中心間の距離で測るものとする。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)ある公園に、図のように(※動画参照)10個の丸い椅子が、\\
東側に5個横一列に、西側に5個一列に、それぞれ1m間隔で置かれている。また東側の\\
椅子と西側の椅子は2つずつ背中合わせに置かれていて、その間隔は1mとなっている。\\
Aさんはいつも東側の椅子のいずれかに、Bさんは西側の椅子のいずれかに、\\
同じ確率で座る。このとき、AさんとBさんの座る日値がソーシャルディスタンスの\\
2m以上である確率は\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}である。\\
なお、AさんもBさんも椅子の中心に座り、ソーシャルディスタンスは座っている\\
椅子の中心間の距離で測るものとする。
\end{eqnarray}
福島大 基本対称式
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$
①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$
2021福島大過去問
この動画を見る
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$
①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$
2021福島大過去問
福田の数学〜慶應義塾大学2021年商学部第4問〜数列の文章題
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 座標平面上でx座標とy座標がいずれも整数である点を格子点と呼ぶ。それぞれ\\
の正の整数nについて、4つの格子点A_n(n,n),\ B_n(-n,n),\ C_n(-n,-n),\ D_n(n,-n)\\
が作る正方形をJ_nとする。また、(n-1,n)にある格子点をP_nとする。\\
\left\{a_k\right\}を初項a_1が-56で、交差が\frac{1}{4}の等差数列とし、数列\left\{a_k\right\}の各項を以下の\\
ようにして格子点上順番に割り当てていく。\\
1.初項a_1は格子点P_1に割り当てる。\\
2.a_lが正方形J_mの周上にある格子点でA_m以外の点に割り当てられているときには、\\
J_mの周上でその点から半時計回り(右図(※動画参照)での矢印が示す方向)に一つ移動\\
した格子点にa_{l+1}を割り当てる。\\
3.a_lが格子点A_mに割り当てられているときには、a_{l+1}を格子点P_{m+1}に割り当てる。\\
\\
全体としては、図に示されているようにして、格子点をたどっていくことになる。\\
(1)格子点P_nに割り当てられる数列\left\{a_k\right\}の項をp_nとし、格子点C_nに割り当て\\
られる数列\left\{a_k\right\}の項をc_nとする。このとき、p_4=-\boxed{\ \ アイ\ \ }, c_4=-\frac{\boxed{\ \ ウエオ\ \ }}{\boxed{\ \ カ\ \ }}である。\\
(2)上で定めたp_nを用いて、q_nを数列\left\{p_n\right\}の初項p_1から第n項p_nまでの和とする。\\
q_nをnを使って表すと、q_n=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}n^3-\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シ\ \ }}n である。\\
(3)上で定めたq_nが最小値を取るのは、n=\boxed{\ \ ス\ \ }またはn=\boxed{\ \ セ\ \ }のときであり、\\
その値は-\boxed{\ \ ソタチ\ \ }である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} 座標平面上でx座標とy座標がいずれも整数である点を格子点と呼ぶ。それぞれ\\
の正の整数nについて、4つの格子点A_n(n,n),\ B_n(-n,n),\ C_n(-n,-n),\ D_n(n,-n)\\
が作る正方形をJ_nとする。また、(n-1,n)にある格子点をP_nとする。\\
\left\{a_k\right\}を初項a_1が-56で、交差が\frac{1}{4}の等差数列とし、数列\left\{a_k\right\}の各項を以下の\\
ようにして格子点上順番に割り当てていく。\\
1.初項a_1は格子点P_1に割り当てる。\\
2.a_lが正方形J_mの周上にある格子点でA_m以外の点に割り当てられているときには、\\
J_mの周上でその点から半時計回り(右図(※動画参照)での矢印が示す方向)に一つ移動\\
した格子点にa_{l+1}を割り当てる。\\
3.a_lが格子点A_mに割り当てられているときには、a_{l+1}を格子点P_{m+1}に割り当てる。\\
\\
全体としては、図に示されているようにして、格子点をたどっていくことになる。\\
(1)格子点P_nに割り当てられる数列\left\{a_k\right\}の項をp_nとし、格子点C_nに割り当て\\
られる数列\left\{a_k\right\}の項をc_nとする。このとき、p_4=-\boxed{\ \ アイ\ \ }, c_4=-\frac{\boxed{\ \ ウエオ\ \ }}{\boxed{\ \ カ\ \ }}である。\\
(2)上で定めたp_nを用いて、q_nを数列\left\{p_n\right\}の初項p_1から第n項p_nまでの和とする。\\
q_nをnを使って表すと、q_n=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}n^3-\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シ\ \ }}n である。\\
(3)上で定めたq_nが最小値を取るのは、n=\boxed{\ \ ス\ \ }またはn=\boxed{\ \ セ\ \ }のときであり、\\
その値は-\boxed{\ \ ソタチ\ \ }である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
福田の数学〜慶應義塾大学2021年商学部第3問〜平面ベクトルと三角形の面積
単元:
#大学入試過去問(数学)#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 点Oを原点とする座標平面上の点P,Q,Rを、ベクトル\overrightarrow{ a }=(2,1),\overrightarrow{ b }=(1,2)を用い、\\
位置ベクトル\overrightarrow{ OP }=f(t)\overrightarrow{ a }, \overrightarrow{ OQ }=f(t+2)\overrightarrow{ a }, \overrightarrow{ OR }=g(t)\overrightarrow{ b }で定める。\\
ここで、f(t),g(t)は、実数tを用いて、\\
f(t)=9t^2+1, g(t)=\frac{1}{8}(t^2-6t+9)で表される。\\
(1)\overrightarrow{ a }と\overrightarrow{ b }のなす角を\thetaとする。ただし、0 \leqq \theta \leqq \piとする。このとき、\\
\sin\theta=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} である。\\
\\
(2)t=-\boxed{\ \ ウ\ \ }のとき、点Pと点Qが一致する。それ以外のとき、点P,Q,Rは\\
異なる3点となり、t=\boxed{\ \ エ\ \ }のときその3点が一直線上に並ぶ。\\
\\
(3)-\frac{4}{3} \leqq t \leqq 4の範囲において、上記(2)以外のとき、\triangle PQRの面積は\\
t=\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}で最大値\boxed{\ \ キク\ \ }をとる。
\end{eqnarray}
2021慶應義塾大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 点Oを原点とする座標平面上の点P,Q,Rを、ベクトル\overrightarrow{ a }=(2,1),\overrightarrow{ b }=(1,2)を用い、\\
位置ベクトル\overrightarrow{ OP }=f(t)\overrightarrow{ a }, \overrightarrow{ OQ }=f(t+2)\overrightarrow{ a }, \overrightarrow{ OR }=g(t)\overrightarrow{ b }で定める。\\
ここで、f(t),g(t)は、実数tを用いて、\\
f(t)=9t^2+1, g(t)=\frac{1}{8}(t^2-6t+9)で表される。\\
(1)\overrightarrow{ a }と\overrightarrow{ b }のなす角を\thetaとする。ただし、0 \leqq \theta \leqq \piとする。このとき、\\
\sin\theta=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} である。\\
\\
(2)t=-\boxed{\ \ ウ\ \ }のとき、点Pと点Qが一致する。それ以外のとき、点P,Q,Rは\\
異なる3点となり、t=\boxed{\ \ エ\ \ }のときその3点が一直線上に並ぶ。\\
\\
(3)-\frac{4}{3} \leqq t \leqq 4の範囲において、上記(2)以外のとき、\triangle PQRの面積は\\
t=\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}で最大値\boxed{\ \ キク\ \ }をとる。
\end{eqnarray}
2021慶應義塾大学商学部過去問
福田の数学〜慶應義塾大学2021年商学部第2問〜確率の計算
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} a,k,nは正の整数で、a \lt kとする。袋の中にk個の玉が入っている。そのうち\\
a個は赤玉で、残りのk-a個は青玉である。\\
「袋から1個の玉を取り出し、色を調べてから袋に戻すとともに、その玉と同色\\
の玉をn個袋に追加する」という操作を繰り返す。\\
(\textrm{i})1回目に赤玉が出たとき、2回目に赤玉が出る確率は\boxed{\ \ ア\ \ }である。\\
(\textrm{ii})2回目に赤玉が出る確率は\boxed{\ \ イ\ \ }である。\\
(\textrm{iii})2回目に青玉が出たとき、1回目に赤玉が出ていた確率は\boxed{\ \ ウ\ \ }である。\\
(\textrm{iv})この操作を3回繰り返す。1回ごとに赤玉が出たら1点、青玉が出たら2点\\
を得るとき、得点の合計が4点となる確率は\boxed{\ \ エ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} a,k,nは正の整数で、a \lt kとする。袋の中にk個の玉が入っている。そのうち\\
a個は赤玉で、残りのk-a個は青玉である。\\
「袋から1個の玉を取り出し、色を調べてから袋に戻すとともに、その玉と同色\\
の玉をn個袋に追加する」という操作を繰り返す。\\
(\textrm{i})1回目に赤玉が出たとき、2回目に赤玉が出る確率は\boxed{\ \ ア\ \ }である。\\
(\textrm{ii})2回目に赤玉が出る確率は\boxed{\ \ イ\ \ }である。\\
(\textrm{iii})2回目に青玉が出たとき、1回目に赤玉が出ていた確率は\boxed{\ \ ウ\ \ }である。\\
(\textrm{iv})この操作を3回繰り返す。1回ごとに赤玉が出たら1点、青玉が出たら2点\\
を得るとき、得点の合計が4点となる確率は\boxed{\ \ エ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名城大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
この動画を見る
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
福田の数学〜慶應義塾大学2021年商学部第1問(2)〜共通接線と面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)点Aを、放物線C_1:y=x^2上にある点で、第1象限(x \gt 0かつy \gt 0の範囲)\\
に属するものとする。そのうえで、次の条件を満たす放物線\\
C_2:y=-3(x-p)^2+q を考える。\\
1.点Aは、放物線C_2上の点である。\\
2.放物線C_2の点Aにおける接線をlとするとき、lは放物線C_1の点Aにおける\\
接線と同一である。\\
点Aの座標をA(a,a^2)とするとき、\\
p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2\\
と表せる。また、直線l、放物線C_2、および直線x=pで囲まれた部分の\\
面積は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3 である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)点Aを、放物線C_1:y=x^2上にある点で、第1象限(x \gt 0かつy \gt 0の範囲)\\
に属するものとする。そのうえで、次の条件を満たす放物線\\
C_2:y=-3(x-p)^2+q を考える。\\
1.点Aは、放物線C_2上の点である。\\
2.放物線C_2の点Aにおける接線をlとするとき、lは放物線C_1の点Aにおける\\
接線と同一である。\\
点Aの座標をA(a,a^2)とするとき、\\
p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2\\
と表せる。また、直線l、放物線C_2、および直線x=pで囲まれた部分の\\
面積は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3 である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
福田の数学〜慶應義塾大学2021年商学部第1問(1)〜対数の基本性質
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)正の実数x,\ yについて、xとyの相加平均を5とする。また、4を底とする\\
x,\ yの対数をそれぞれX,\ Yとしたとき、XとYの相加平均は1であるとする。\\
このとき、x \lt yとすると、x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ } である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)正の実数x,\ yについて、xとyの相加平均を5とする。また、4を底とする\\
x,\ yの対数をそれぞれX,\ Yとしたとき、XとYの相加平均は1であるとする。\\
このとき、x \lt yとすると、x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ } である。
\end{eqnarray}
2021慶應義塾大学商学部過去問
数学「大学入試良問集」【18−9 定積分関数と微分】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{-x}^{x+4}\displaystyle \frac{t}{t^2+1}dt$について、次の各問いに答えよ。
(1)$f(x)=0$となる$x$の値を求めよ。
(2)$f'(x)=0$となる$x$の値を求めよ。
(3)$f(x)$が最小値をもつことを示し、その最小値を求めよ。
この動画を見る
関数$f(x)=\displaystyle \int_{-x}^{x+4}\displaystyle \frac{t}{t^2+1}dt$について、次の各問いに答えよ。
(1)$f(x)=0$となる$x$の値を求めよ。
(2)$f'(x)=0$となる$x$の値を求めよ。
(3)$f(x)$が最小値をもつことを示し、その最小値を求めよ。
福田の数学〜慶應義塾大学2021年経済学部第6問〜3次関数の接線と面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、y=F(x)で\\
定まる曲線をCとする。\alpha \lt \betaを満たす実数\alpha,\ \betaに対して、C上の点A(\alpha,F(\alpha))\\
におけるCの接線をL_{\alpha}とするとき、CとL_{\alpha}とのA以外の共有点がB(\beta,F(\beta))\\
であるとする。さらに、BにおけるCの接線をL_{\beta}とのB以外の共有点を(\gamma,F(\gamma))\\
とする。\\
\\
(1)接線L_{\alpha}の方程式をy=l_{\alpha}(x)とし、G(x)=F(x)-l_{\alpha}(x)とおく。さらに、\\
曲線y=G(x)上の点(\beta,G(\beta))における接線の方程式をy=m(x)とする。G(x)\\
およびm(x)を、それぞれ\alpha,\betaを用いて因数分解された形に表せ。必要ならば\\
xの整式で表される関数p(x),q(x)とそれらの導関数に関して成り立つ公式\\
\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)\\
を用いてもよい。\\
\\
(2)接線L_{\beta}の方程式は(1)で定めたl_{\alpha}(x),\ m(x)を用いて、y=l_{\alpha}(x)+ m(x)で\\
与えられることを示せ。さらに、\gammaを\alpha,\betaを用いて表せ。\\
\\
(3)曲線CおよびL_{\beta}で囲まれた図形の面積をSとする。Sを\alpha,\betaを用いて表せ。\\
さらに\alpha,\betaが-1 \lt \alpha \lt 0かつ1 \lt \beta \lt 2を満たすとき、Sの取り得る値の\\
範囲を求めよ。必要ならばr \lt sを満たす実数r,sに対して成り立つ公式\\
\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4\\
を用いてもよい。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}} F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、y=F(x)で\\
定まる曲線をCとする。\alpha \lt \betaを満たす実数\alpha,\ \betaに対して、C上の点A(\alpha,F(\alpha))\\
におけるCの接線をL_{\alpha}とするとき、CとL_{\alpha}とのA以外の共有点がB(\beta,F(\beta))\\
であるとする。さらに、BにおけるCの接線をL_{\beta}とのB以外の共有点を(\gamma,F(\gamma))\\
とする。\\
\\
(1)接線L_{\alpha}の方程式をy=l_{\alpha}(x)とし、G(x)=F(x)-l_{\alpha}(x)とおく。さらに、\\
曲線y=G(x)上の点(\beta,G(\beta))における接線の方程式をy=m(x)とする。G(x)\\
およびm(x)を、それぞれ\alpha,\betaを用いて因数分解された形に表せ。必要ならば\\
xの整式で表される関数p(x),q(x)とそれらの導関数に関して成り立つ公式\\
\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)\\
を用いてもよい。\\
\\
(2)接線L_{\beta}の方程式は(1)で定めたl_{\alpha}(x),\ m(x)を用いて、y=l_{\alpha}(x)+ m(x)で\\
与えられることを示せ。さらに、\gammaを\alpha,\betaを用いて表せ。\\
\\
(3)曲線CおよびL_{\beta}で囲まれた図形の面積をSとする。Sを\alpha,\betaを用いて表せ。\\
さらに\alpha,\betaが-1 \lt \alpha \lt 0かつ1 \lt \beta \lt 2を満たすとき、Sの取り得る値の\\
範囲を求めよ。必要ならばr \lt sを満たす実数r,sに対して成り立つ公式\\
\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4\\
を用いてもよい。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
数学「大学入試良問集」【18−8 微分係数の定義】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\sin\ x$について$x=a$における微分係数は$\cos\ a$であるが、これを定義に従って求めてみよう。
そのために次の順序で各問いに答えよ。
(1)
$0 \lt x \lt \displaystyle \frac{\pi}{2}$のとき$0 \lt \sin\ x \lt x \lt \tan\ x$が成り立つことを図を用いて説明せよ。
(図は座標平面上の原点を中心とする半径1の円の第1象限の部分を用いよ。)
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x}{x}=1,\ \displaystyle \lim_{ x \to 0 }\displaystyle \frac{1-\cos\ x}{x}=0$を示せ。
(3)
関数$f(x)$の$x=a$における微分係数$f'(a)$の定義を述べ、その定義に従って$f(x)=\sin\ x$の場合に$f'(a)$を求めよ。
この動画を見る
$\sin\ x$について$x=a$における微分係数は$\cos\ a$であるが、これを定義に従って求めてみよう。
そのために次の順序で各問いに答えよ。
(1)
$0 \lt x \lt \displaystyle \frac{\pi}{2}$のとき$0 \lt \sin\ x \lt x \lt \tan\ x$が成り立つことを図を用いて説明せよ。
(図は座標平面上の原点を中心とする半径1の円の第1象限の部分を用いよ。)
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x}{x}=1,\ \displaystyle \lim_{ x \to 0 }\displaystyle \frac{1-\cos\ x}{x}=0$を示せ。
(3)
関数$f(x)$の$x=a$における微分係数$f'(a)$の定義を述べ、その定義に従って$f(x)=\sin\ x$の場合に$f'(a)$を求めよ。
福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用
単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 空間の2点OとAは|\overrightarrow{ OA }|=2を満たすとし、点Aを通り\overrightarrow{ OA }に直交する平面をHとする。\\
平面H上の三角形ABCは、正の実数aに対し\\
|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2\\
を満たすとする。ただし、\overrightarrow{ u }・\overrightarrow{ v }はベクトル\overrightarrow{ u }と\overrightarrow{ v }の内積を表す。\\
(1)\overrightarrow{ OA }・\overrightarrow{ OB }の値を求めよ。\\
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を\\
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。\\
(2)ベクトル\overrightarrow{ OP }を、実数\alpha,\beta,\gammaを用いて\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }と表すとき、\\
\alpha,\beta,\gammaの値をそれぞれ求めよ。\\
(3)空間の点Qは2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }を満たすとする。直線PQが、\\
点Oを中心とする半径2の球Sに接しているとき、|\overrightarrow{ AP }|の値およびaの値を求めよ。\\
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、\\
\triangle APRの面積を求めよ。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}} 空間の2点OとAは|\overrightarrow{ OA }|=2を満たすとし、点Aを通り\overrightarrow{ OA }に直交する平面をHとする。\\
平面H上の三角形ABCは、正の実数aに対し\\
|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2\\
を満たすとする。ただし、\overrightarrow{ u }・\overrightarrow{ v }はベクトル\overrightarrow{ u }と\overrightarrow{ v }の内積を表す。\\
(1)\overrightarrow{ OA }・\overrightarrow{ OB }の値を求めよ。\\
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を\\
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。\\
(2)ベクトル\overrightarrow{ OP }を、実数\alpha,\beta,\gammaを用いて\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }と表すとき、\\
\alpha,\beta,\gammaの値をそれぞれ求めよ。\\
(3)空間の点Qは2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }を満たすとする。直線PQが、\\
点Oを中心とする半径2の球Sに接しているとき、|\overrightarrow{ AP }|の値およびaの値を求めよ。\\
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、\\
\triangle APRの面積を求めよ。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
福田の数学〜慶應義塾大学2021年経済学部第4問〜対数不等式と数列
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} kを実数の定数とする。実数xは不等式\\
(*) 2\log_5x-\log_5(6x-5^k) \lt k-1\\
を満たすとする。\\
\\
(1)不等式(*)を満たすxの値の範囲を、kを用いて表せ。\\
\\
(2)kを自然数とする。(*)を満たすxのうち奇数の個数をa_kとし\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。a_kをkの式で表し、さらにS_nをnの式で表せ。\\
\\
(3)(2)のS_nに対して、S_n+nが10桁の整数となるような自然数n\\
の値を求めよ。なお、必要があれば0.30 \lt \log_{10}2 \lt 0.31を用いよ。
\end{eqnarray}
2021慶應義塾大学経済学過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} kを実数の定数とする。実数xは不等式\\
(*) 2\log_5x-\log_5(6x-5^k) \lt k-1\\
を満たすとする。\\
\\
(1)不等式(*)を満たすxの値の範囲を、kを用いて表せ。\\
\\
(2)kを自然数とする。(*)を満たすxのうち奇数の個数をa_kとし\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。a_kをkの式で表し、さらにS_nをnの式で表せ。\\
\\
(3)(2)のS_nに対して、S_n+nが10桁の整数となるような自然数n\\
の値を求めよ。なお、必要があれば0.30 \lt \log_{10}2 \lt 0.31を用いよ。
\end{eqnarray}
2021慶應義塾大学経済学過去問
数学「大学入試良問集」【18−7 球に外接する直円錐の最小体積】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
半径$a$の球に外接する直円錐について、次の各問いに答えよ。
(1)直円錐の底面の半径を$x$とするとき、その高さを$x$を用いて表せ。
(2)このような直円錐の体積の最小値を求めよ。
この動画を見る
半径$a$の球に外接する直円錐について、次の各問いに答えよ。
(1)直円錐の底面の半径を$x$とするとき、その高さを$x$を用いて表せ。
(2)このような直円錐の体積の最小値を求めよ。
福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 数列\left\{a_n\right\}に対して、\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。\left\{a_n\right\}は、a_2=1,a_6=2および\\
(*) S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)\\
を満たすとする。\\
\\
(1)a_1=-\boxed{\ \ ア\ \ }である。(*)でn=4,5とすると、a_3+a_4とa_5の関係が2通り定まり、\\
a_5=\boxed{\ \ イ\ \ }と求まる。さらに(*)でn=3として、a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }と求まる。\\
\\
(2)n \geqq 2に対してa_n=S_n-S_{n-1}であるから(*)とあわせて\\
(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)\\
\\
ゆえに、n \geqq 3ならば(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_nとなる。そこで、n \geqq 3に\\
対してb_n=(n-r)(n-s)(n-t)a_nとおくと、漸化式\\
b_{n+1}=b_n (nz-3,4,5,\ldots)\\
が成り立つ。ただしここに、r \lt s \lt tとしてr=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }である。\\
したがって、n \geqq 4に対して\\
a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}\\
となる。この式はn=3の時も成立する。\\
\\
(3)n \geqq 2に対して\\
S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}\\
であるから、S_n \geqq 59となる最小のnはn=\boxed{\ \ ニヌ\ \ }である。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 数列\left\{a_n\right\}に対して、\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。\left\{a_n\right\}は、a_2=1,a_6=2および\\
(*) S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)\\
を満たすとする。\\
\\
(1)a_1=-\boxed{\ \ ア\ \ }である。(*)でn=4,5とすると、a_3+a_4とa_5の関係が2通り定まり、\\
a_5=\boxed{\ \ イ\ \ }と求まる。さらに(*)でn=3として、a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }と求まる。\\
\\
(2)n \geqq 2に対してa_n=S_n-S_{n-1}であるから(*)とあわせて\\
(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)\\
\\
ゆえに、n \geqq 3ならば(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_nとなる。そこで、n \geqq 3に\\
対してb_n=(n-r)(n-s)(n-t)a_nとおくと、漸化式\\
b_{n+1}=b_n (nz-3,4,5,\ldots)\\
が成り立つ。ただしここに、r \lt s \lt tとしてr=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }である。\\
したがって、n \geqq 4に対して\\
a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}\\
となる。この式はn=3の時も成立する。\\
\\
(3)n \geqq 2に対して\\
S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}\\
であるから、S_n \geqq 59となる最小のnはn=\boxed{\ \ ニヌ\ \ }である。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
数学「大学入試良問集」【18−6 平均値の定理と不等式の証明】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#姫路工業大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。
(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$
(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
この動画を見る
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。
(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$
(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
福田の数学〜慶應義塾大学2021年経済学部第2問〜色々な条件付き確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 1個のさいころを繰り返し投げ、出た目の数により以下の(\textrm{a}),(\textrm{b})に従い得点を定める。\\
(\textrm{a})最初から10回連続して1の目が出た場合には、10回目で投げ終えて、\\
得点を0点とする。\\
(\textrm{b})mを0 \leqq m \leqq 9を満たす整数とする。最初からm回連続して1の目が出て\\
かつm+1回目に初めて1以外の目nが出た場合には、続けてさらにn回\\
投げたところで投げ終えて、1回目からm+n+1回目までに出た目の合計\\
を得点とする。ただし、最初から1以外の目が出た場合にはm=0とする。\\
\\
(1)得点が49点であるとする。このとき、n=\boxed{\ \ ア\ \ }となり、mの取り得る値の範囲\\
は\boxed{\ \ イ\ \ } \leqq m \leqq \boxed{\ \ ウ\ \ }であり、得点が49点となる確率は\frac{\boxed{\ \ エオ\ \ }}{6^{16}}である。また、得点が\\
49点で、さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ カキ\ \ }}{6^{16}}となる。さらに\\
得点が49点である条件のもとで、さいころを投げる回数が14回以下である\\
条件付き確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}となる。\\
\\
(2)さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ シ\ \ }}{6^{10}}となる。ゆえに、さいころを\\
投げる回数が14回以下である条件のもとで、得点が49点となる条件付き確率\\
は、k=\boxed{\ \ ス\ \ }とおいて\frac{1}{6^k(6^{10}-\boxed{\ \ セ\ \ })}となる。\\
\\
(3)得点が正の数で、かつ、さいころを投げる回数が14回以下である条件のもとで、\\
得点が49点となる条件付き確率はl=\boxed{\ \ ソ\ \ }とおいて\frac{1}{6^l(6^{10}-\boxed{\ \ タ\ \ })}となる。\\
\end{eqnarray}
2021慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} 1個のさいころを繰り返し投げ、出た目の数により以下の(\textrm{a}),(\textrm{b})に従い得点を定める。\\
(\textrm{a})最初から10回連続して1の目が出た場合には、10回目で投げ終えて、\\
得点を0点とする。\\
(\textrm{b})mを0 \leqq m \leqq 9を満たす整数とする。最初からm回連続して1の目が出て\\
かつm+1回目に初めて1以外の目nが出た場合には、続けてさらにn回\\
投げたところで投げ終えて、1回目からm+n+1回目までに出た目の合計\\
を得点とする。ただし、最初から1以外の目が出た場合にはm=0とする。\\
\\
(1)得点が49点であるとする。このとき、n=\boxed{\ \ ア\ \ }となり、mの取り得る値の範囲\\
は\boxed{\ \ イ\ \ } \leqq m \leqq \boxed{\ \ ウ\ \ }であり、得点が49点となる確率は\frac{\boxed{\ \ エオ\ \ }}{6^{16}}である。また、得点が\\
49点で、さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ カキ\ \ }}{6^{16}}となる。さらに\\
得点が49点である条件のもとで、さいころを投げる回数が14回以下である\\
条件付き確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}となる。\\
\\
(2)さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ シ\ \ }}{6^{10}}となる。ゆえに、さいころを\\
投げる回数が14回以下である条件のもとで、得点が49点となる条件付き確率\\
は、k=\boxed{\ \ ス\ \ }とおいて\frac{1}{6^k(6^{10}-\boxed{\ \ セ\ \ })}となる。\\
\\
(3)得点が正の数で、かつ、さいころを投げる回数が14回以下である条件のもとで、\\
得点が49点となる条件付き確率はl=\boxed{\ \ ソ\ \ }とおいて\frac{1}{6^l(6^{10}-\boxed{\ \ タ\ \ })}となる。\\
\end{eqnarray}
2021慶應義塾大学経済学部過去問