学校別大学入試過去問解説(数学)
学校別大学入試過去問解説(数学)
数学「大学入試良問集」【14−7ベクトルの等式と円】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$の外接円の中心を$O$とし、半径を1とする。
$13\overrightarrow{ OA }+12\overrightarrow{ OB }+5\overrightarrow{ OC }=\vec{ 0 }$であるとき、次の問いに答えよ。
(1)内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を求めよ。
(2)$\triangle OAB,\triangle OBC,\triangle OCA$の面積を求めよ。
この動画を見る
$\triangle ABC$の外接円の中心を$O$とし、半径を1とする。
$13\overrightarrow{ OA }+12\overrightarrow{ OB }+5\overrightarrow{ OC }=\vec{ 0 }$であるとき、次の問いに答えよ。
(1)内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を求めよ。
(2)$\triangle OAB,\triangle OBC,\triangle OCA$の面積を求めよ。
福田の数学〜立教大学2021年経済学部第2問〜2項間の漸化式の解法

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)$
また、$n$に無関係な定数$p,q$に対し、
$b_n=a_n+pn+q (n=1,2,3,\ldots)$
とおく。このとき次の問いに答えよ。
(1)$n,p,q$に無関係な定数$A,B,C,D,E$が
$b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)$
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。
(2)Aを(1)で求めた値とする。数列$\left\{b_n\right\}$が公比$A$の等比数列となるような
$p,q$の値をそれぞれ求めよ。
(3)(2)で求めた$p,q$の値に対して、数列$\left\{b_n\right\}$の一般項を求めよ。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{3}}$次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)$
また、$n$に無関係な定数$p,q$に対し、
$b_n=a_n+pn+q (n=1,2,3,\ldots)$
とおく。このとき次の問いに答えよ。
(1)$n,p,q$に無関係な定数$A,B,C,D,E$が
$b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)$
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。
(2)Aを(1)で求めた値とする。数列$\left\{b_n\right\}$が公比$A$の等比数列となるような
$p,q$の値をそれぞれ求めよ。
(3)(2)で求めた$p,q$の値に対して、数列$\left\{b_n\right\}$の一般項を求めよ。
2021立教大学経済学部過去問
大学入試問題#35 秋田大学(2020) 整数問題

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師:
ますただ
問題文全文(内容文):
自然数$n$の各位の数の和を$S(n)$とする。
例:$S(2019)=2+0+1+9$
(1)
$n+S(n)=100$をみたす$n$を求めよ。
(2)
$S(n)=100$をみたす最小の$n$を求めよ。
出典:2020年秋田大学 入試問題
この動画を見る
自然数$n$の各位の数の和を$S(n)$とする。
例:$S(2019)=2+0+1+9$
(1)
$n+S(n)=100$をみたす$n$を求めよ。
(2)
$S(n)=100$をみたす最小の$n$を求めよ。
出典:2020年秋田大学 入試問題
【理数個別の過去問解説】2020年度横浜国立大学 数学 第5問(4)解説

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問5(4)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
この動画を見る
横浜国立大学2020年度大問5(4)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
福田の数学〜立教大学2021年経済学部第1問(6)〜平均と分散の関係

単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)10個の正三角形がある。それらの辺の長さからなるデータの平均は9である。
また、それらの面積からなるデータの平均値は$\frac{118\sqrt3}{5}$である。このとき、
辺の長さからなるデータの分散は$\ \boxed{ク}$である。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{1}}$(6)10個の正三角形がある。それらの辺の長さからなるデータの平均は9である。
また、それらの面積からなるデータの平均値は$\frac{118\sqrt3}{5}$である。このとき、
辺の長さからなるデータの分散は$\ \boxed{ク}$である。
2021立教大学経済学部過去問
微分方程式 高専数学 p 106-1番

単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師:
ますただ
問題文全文(内容文):
微分方程式
$\displaystyle \frac{dx}{dt}=\sqrt{ 2t+x+4 }$の一般解を求めよ。
この動画を見る
微分方程式
$\displaystyle \frac{dx}{dt}=\sqrt{ 2t+x+4 }$の一般解を求めよ。
【理数個別の過去問解説】2020年度横浜国立大学 数学 第5問(3)解説

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問5(3)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
この動画を見る
横浜国立大学2020年度大問5(3)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
数学「大学入試良問集」【14−6ベクトル方程式と領域図示】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において$\overrightarrow{ CA }=\vec{ a },\overrightarrow{ CB }=\vec{ b }$とする。
次の問いに答えよ。
(1)
実数$s,t$が$0 \leqq s+t \leqq 1,s \geqq 0,t \geqq 0$の範囲を動くとき、次の各条件を満たす点$P$の存在する範囲をそれぞれ図示せよ。
(a)$\overrightarrow{ CP }=s\vec{ a }+t(\vec{ a }+\vec{ b })$
(b)$\overrightarrow{ CP }=(2s+t)\vec{ a }+(s-t)\vec{ b }$
(2)
(1)の各場合に、点$P$の存在する範囲の面積は$\triangle ABC$の面積の何倍か。
この動画を見る
$\triangle ABC$において$\overrightarrow{ CA }=\vec{ a },\overrightarrow{ CB }=\vec{ b }$とする。
次の問いに答えよ。
(1)
実数$s,t$が$0 \leqq s+t \leqq 1,s \geqq 0,t \geqq 0$の範囲を動くとき、次の各条件を満たす点$P$の存在する範囲をそれぞれ図示せよ。
(a)$\overrightarrow{ CP }=s\vec{ a }+t(\vec{ a }+\vec{ b })$
(b)$\overrightarrow{ CP }=(2s+t)\vec{ a }+(s-t)\vec{ b }$
(2)
(1)の各場合に、点$P$の存在する範囲の面積は$\triangle ABC$の面積の何倍か。
【理数個別の過去問解説】2020年度横浜国立大学 数学 第5問(2)解説

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問5(2)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
この動画を見る
横浜国立大学2020年度大問5(2)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
福田の数学〜立教大学2021年経済学部第1問(5)〜対数方程式

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)$x$についての方程式
$(\log_2x)^2+5\log_2x+2=0$
の2つの解を$\alpha,\beta$とおくと、$\alpha\beta=\boxed{キ}$である。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{1}}$(5)$x$についての方程式
$(\log_2x)^2+5\log_2x+2=0$
の2つの解を$\alpha,\beta$とおくと、$\alpha\beta=\boxed{キ}$である。
2021立教大学経済学部過去問
大学入試問題#34 富山県立大学(2020) 定積分

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#富山県立大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e^2}\displaystyle \frac{log\ x}{x(1+log\ x)^2}\ dx$を計算せよ。
出典:2020年富山県立大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{e^2}\displaystyle \frac{log\ x}{x(1+log\ x)^2}\ dx$を計算せよ。
出典:2020年富山県立大学 入試問題
【理数個別の過去問解説】2020年度横浜国立大学 数学 第5問(1)解説

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問5(1)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
この動画を見る
横浜国立大学2020年度大問5(1)
aを正の実数とする。$n=1,2,3,…$に対して、
$I_n=\displaystyle \int_{0}^{1}x^{n+a-1}e^{-x}dx$
と定める。次の問に答えよ。
(1)$n=1,2,3,…$に対して、$I_n\leqq \dfrac{1}{n+a}$を示せ。
(2)$n=1,2,3,…$に対して、$I_{n+1}-(n+a)I_n$を求めよ。
(3)極限値$\displaystyle \lim_{n\to\infty}nI_n$を求めよ。
(4)実数b,cに対して、$J_n=n^3\left(I_n+\dfrac{b}{n}+\dfrac{c}{n^2}\right)(n=1,2,3,…)$と定める。数列{$J_n$}が収束するとき、次の問いに答えよ。
(ア)bを求めよ。
(イ)cをaの式で表せ。
(ウ)極限値$\displaystyle \lim_{n\to\infty}J_n$をaの式で表せ。
福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積

単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。
2021立教大学経済学部過去問
大学入試問題#33 浜松医科大学(2020) 漸化式と級数

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
数列$\{a_n\}$を
$a_1=1,\ 3a_{n+1}=a_n+\displaystyle \frac{1}{2^{n+1}}$で定める。
(1)一般項$a_n$を求めよ。
(2)$\displaystyle \sum_{n=1}^\infty\ n\ a_n$の収束、発散を調べよ。
収束するときはその和を求めよ。
出典:2020年浜松医科大学 入試問題
この動画を見る
数列$\{a_n\}$を
$a_1=1,\ 3a_{n+1}=a_n+\displaystyle \frac{1}{2^{n+1}}$で定める。
(1)一般項$a_n$を求めよ。
(2)$\displaystyle \sum_{n=1}^\infty\ n\ a_n$の収束、発散を調べよ。
収束するときはその和を求めよ。
出典:2020年浜松医科大学 入試問題
福田の数学〜立教大学2021年経済学部第1問(3)〜さいころの確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)3個のさいころを1回投げるとき、出た目の最大値が3となる確率は
$\boxed{エ}$であり、また、出た目の積が8となる確率は$\boxed{オ}$である。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{1}}$(3)3個のさいころを1回投げるとき、出た目の最大値が3となる確率は
$\boxed{エ}$であり、また、出た目の積が8となる確率は$\boxed{オ}$である。
2021立教大学経済学部過去問
福田の数学〜立教大学2021年経済学部第1問(2)〜円に内接する四角形

単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。
2021立教大学経済学部過去問
大学入試問題#32 福島大学(2020) 数列の収束条件

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
ますただ
問題文全文(内容文):
$x:$実数
$a_n=(\displaystyle \frac{5x+1}{x^2+5})^n$
$\displaystyle \lim_{ n \to \infty }a_n=0$のとき$x$の範囲を求めよ。
出典:2020年福島大学 入試問題
この動画を見る
$x:$実数
$a_n=(\displaystyle \frac{5x+1}{x^2+5})^n$
$\displaystyle \lim_{ n \to \infty }a_n=0$のとき$x$の範囲を求めよ。
出典:2020年福島大学 入試問題
数学「大学入試良問集」【14−5円と正方形とベクトル】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#熊本工業大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
この動画を見る
正方形$ABCD$において、$CD$の中点を$E$とし、$AE$の延長と正方形の外接円との交点を$F$とする。
$\overrightarrow{ AB }=\vec{ a },\overrightarrow{ BC }=\vec{ b }$とするとき、$\overrightarrow{ AF }$を$\vec{ a }$と$\vec{ b }$を用いて表せ。
福田の数学〜立教大学2021年経済学部第1問(1)〜相加平均と相乗平均の関係

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$x \gt 0$における$(x+\frac{1}{x})(x+\frac{2}{x})$の最小値は$\boxed{ア}$である。
2021立教大学経済学部過去問
この動画を見る
${\Large\boxed{1}}$(1)$x \gt 0$における$(x+\frac{1}{x})(x+\frac{2}{x})$の最小値は$\boxed{ア}$である。
2021立教大学経済学部過去問
大学入試問題数学#31 名古屋工業大学 改 (2020) 定積分と極限

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋工業大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{0}^{R}e^{-\sqrt{ x }}dx$を求めよ。
$\displaystyle \lim_{ x \to \infty }xe^{-x}=0$は用いてよい。
出典:2020年名古屋工業大学 入試問題
この動画を見る
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{0}^{R}e^{-\sqrt{ x }}dx$を求めよ。
$\displaystyle \lim_{ x \to \infty }xe^{-x}=0$は用いてよい。
出典:2020年名古屋工業大学 入試問題
福田の数学〜立教大学2021年理学部第4問〜極形式で与えられたzの計算

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$複素数$z$を$z=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}$とする。ただし、iは虚数単位とする。また、
$a=z+\frac{1}{z}, b=z^2+\frac{1}{z^2}, c=z^3+\frac{1}{z^3}$ とおく。次の問いに答えよ。
(1)$z^7$は有理数になる。その値を求めよ。
(2)$z+z^2+z^3+z^4+z^5+z^6$ は有理数になる。その値を求めよ。
(3)$A=a+b+c$ は有理数になる。その値を求めよ。
(4)$B=a^2+b^2+c^2$ は有理数になる。その値を求めよ。
(5)$C=ab+bc+ca$ は有理数になる。その値を求めよ。
(6)$D=a^3+b^3+c^3-3abc$ は有理数になる。その値を求めよ。
2021立教大学理工学部過去問
この動画を見る
${\Large\boxed{4}}$複素数$z$を$z=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}$とする。ただし、iは虚数単位とする。また、
$a=z+\frac{1}{z}, b=z^2+\frac{1}{z^2}, c=z^3+\frac{1}{z^3}$ とおく。次の問いに答えよ。
(1)$z^7$は有理数になる。その値を求めよ。
(2)$z+z^2+z^3+z^4+z^5+z^6$ は有理数になる。その値を求めよ。
(3)$A=a+b+c$ は有理数になる。その値を求めよ。
(4)$B=a^2+b^2+c^2$ は有理数になる。その値を求めよ。
(5)$C=ab+bc+ca$ は有理数になる。その値を求めよ。
(6)$D=a^3+b^3+c^3-3abc$ は有理数になる。その値を求めよ。
2021立教大学理工学部過去問
大学入試問題#30 信州大学後期(2020) 三角関数

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^{2n}\ \cos\displaystyle \frac{k\pi}{n}=0$を示せ
出典:2020年信州大学 入試問題 後期
この動画を見る
$\displaystyle \sum_{k=1}^{2n}\ \cos\displaystyle \frac{k\pi}{n}=0$を示せ
出典:2020年信州大学 入試問題 後期
福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数列#漸化式#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$nを0以上の整数とする。定積分
$I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx$
について、次の問(1)~(4)に答えよ。ただし、$e$は自然対数の底である。
(1)$I_0, I_1$の値をそれぞれ求めよ。
(2)$I_{n+1}$を$I_n$と$n$を用いて表せ。
(3)$x \gt 0$とする。関数$f(x)=\frac{(\log x)^2}{x}$の増減表を書け。
ただし、極値も増減表に記入すること。
(4)座標平面上の曲線$y=\frac{(\log x)^2}{x}$, x軸と直線$x=e$とで囲まれた図形を、
x軸の周りに1回転させてできる立体の体積Vを求めよ。
2021立教大学理工学部過去問
この動画を見る
${\Large\boxed{3}}$nを0以上の整数とする。定積分
$I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx$
について、次の問(1)~(4)に答えよ。ただし、$e$は自然対数の底である。
(1)$I_0, I_1$の値をそれぞれ求めよ。
(2)$I_{n+1}$を$I_n$と$n$を用いて表せ。
(3)$x \gt 0$とする。関数$f(x)=\frac{(\log x)^2}{x}$の増減表を書け。
ただし、極値も増減表に記入すること。
(4)座標平面上の曲線$y=\frac{(\log x)^2}{x}$, x軸と直線$x=e$とで囲まれた図形を、
x軸の周りに1回転させてできる立体の体積Vを求めよ。
2021立教大学理工学部過去問
大学入試問題#29 愛知教育大学(2020) 数学的帰納法

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師:
ますただ
問題文全文(内容文):
数列$\{a_n\}$において
各自然数$n$に対して$a_n \gt 2n$をみたす。
このとき$n \geqq 2$のとき$(1+\displaystyle \frac{1}{a_1})(1+\displaystyle \frac{1}{a_1})・・・(1+\displaystyle \frac{1}{a_n}) \lt n$が成り立つことを示せ
出典:2020年愛知教育大学 入試問題
この動画を見る
数列$\{a_n\}$において
各自然数$n$に対して$a_n \gt 2n$をみたす。
このとき$n \geqq 2$のとき$(1+\displaystyle \frac{1}{a_1})(1+\displaystyle \frac{1}{a_1})・・・(1+\displaystyle \frac{1}{a_n}) \lt n$が成り立つことを示せ
出典:2020年愛知教育大学 入試問題
数学「大学入試良問集」【14−4内心と平面ベクトルと面積の問題】を宇宙一わかりやすく

単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$において、$AB=3,BC=4,CA=2$とする。
このとき、$\angle A$と$\angle B$の2等分線の交点を$I$とする。
(1)$\overrightarrow{ AI }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)$\triangle ABC$の面積を求めよ。
(3)$\triangle IBC$の面積を求めよ。
この動画を見る
$\triangle ABC$において、$AB=3,BC=4,CA=2$とする。
このとき、$\angle A$と$\angle B$の2等分線の交点を$I$とする。
(1)$\overrightarrow{ AI }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。
(2)$\triangle ABC$の面積を求めよ。
(3)$\triangle IBC$の面積を求めよ。
福田の数学〜立教大学2021年理学部第2問〜2直線のなす角の最大

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$座標平面において、放物線$y=x^2$上の点でx座標が$p,p+1,p+2$である点を
それぞれ$P,Q,R$とする。また、直線PQの傾きを$m_1$、直線PRの傾きを$m_2$、
$\angle QPR=\theta$とする。
(1)$m_1,\ m_2$をそれぞれ$p$を用いて表せ。
(2)$p$が実数全体を動くとき、$m_1m_2$の最小値を求めよ。
(3)$\tan\theta$を$p$を用いて表せ。
(4)$p$が実数全体を動くとき、$\theta$が最大になる$p$の値を求めよ。
2021立教大学理工学部過去問
この動画を見る
${\Large\boxed{2}}$座標平面において、放物線$y=x^2$上の点でx座標が$p,p+1,p+2$である点を
それぞれ$P,Q,R$とする。また、直線PQの傾きを$m_1$、直線PRの傾きを$m_2$、
$\angle QPR=\theta$とする。
(1)$m_1,\ m_2$をそれぞれ$p$を用いて表せ。
(2)$p$が実数全体を動くとき、$m_1m_2$の最小値を求めよ。
(3)$\tan\theta$を$p$を用いて表せ。
(4)$p$が実数全体を動くとき、$\theta$が最大になる$p$の値を求めよ。
2021立教大学理工学部過去問
大学入試問題#28 東海大学医学部(2021) 極限

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{1}{x-2}(\displaystyle \int_{0}^{x}x^4e^{2t}dt-\displaystyle \int_{0}^{2}16e^{2t}dt)$を求めよ。
出典:2021年東海大学医学部 入試問題
この動画を見る
$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{1}{x-2}(\displaystyle \int_{0}^{x}x^4e^{2t}dt-\displaystyle \int_{0}^{2}16e^{2t}dt)$を求めよ。
出典:2021年東海大学医学部 入試問題
【理数個別の過去問解説】2020年度横浜国立大学 数学 第4問(3)解説

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
横浜国立大学2020年度大問4(3)
xyz空間に、2点A(1,2,9)、B(-3,6,7)を通る直線lがある。また、l上の点P、Qと、x軸上の点R、Sは
直線$PR⊥xy$平面、直線$QS⊥x$軸、直線$QS⊥l$
を満たす。次の問いに答えよ。
(1)P、Rの座標を求めよ。
(2)Q、Sの座標を求めよ。
(3)線分PQをx軸のまわりに1回転してできる局面と、Pを含みx軸に垂直な平面と、Qを含みx軸に垂直な平面で囲まれた立体の体積を求めよ。
この動画を見る
横浜国立大学2020年度大問4(3)
xyz空間に、2点A(1,2,9)、B(-3,6,7)を通る直線lがある。また、l上の点P、Qと、x軸上の点R、Sは
直線$PR⊥xy$平面、直線$QS⊥x$軸、直線$QS⊥l$
を満たす。次の問いに答えよ。
(1)P、Rの座標を求めよ。
(2)Q、Sの座標を求めよ。
(3)線分PQをx軸のまわりに1回転してできる局面と、Pを含みx軸に垂直な平面と、Qを含みx軸に垂直な平面で囲まれた立体の体積を求めよ。
福田の数学〜立教大学2021年理学部第1問(5)〜対数の計算

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。
2021立教大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$ (5)$A=4^{(4^4)},\ B=(4^4)^4$のとき、$\log_2(\log_2A)-\log_2(\log_2B)$の値を
整数で表すと$\boxed{\ \ カ\ \ }$である。
2021立教大学理工学部過去問
大学入試問題#27 お茶の水女子大学(2020) 微積の応用(難)

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\displaystyle \int_{0}^{2\pi}x^3t^2\sin(x\ t)dt$
$-10 \leqq x \leqq 10$において$f(x)$を最大にする$x$の値をすべて求めよ。
出典:2020年お茶の水女子大学 入試問題
この動画を見る
$f(x)=\displaystyle \int_{0}^{2\pi}x^3t^2\sin(x\ t)dt$
$-10 \leqq x \leqq 10$において$f(x)$を最大にする$x$の値をすべて求めよ。
出典:2020年お茶の水女子大学 入試問題
