式の計算(整式・展開・因数分解)
2023高校入試解説22問目 二乗の和で表せ①昭和学院秀英(改)
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$13^2 = 5^2 +12^2$のように$13^2$は2つの自然数の2乗の和で表せる。これを利用して$13^2$を3つの自然数の2乗の和で表せ。
2023昭和学院秀英高等学校
この動画を見る
$13^2 = 5^2 +12^2$のように$13^2$は2つの自然数の2乗の和で表せる。これを利用して$13^2$を3つの自然数の2乗の和で表せ。
2023昭和学院秀英高等学校
2023高校入試解説19問目 式の値 久留米大附設
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y = 7 \\
x^2 + y^2 = 169
\end{array}
\right.
\end{eqnarray}
$(x-y)(x^2 -y^2) = ?$
2023久留米大学附設高等学校
この動画を見る
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y = 7 \\
x^2 + y^2 = 169
\end{array}
\right.
\end{eqnarray}
$(x-y)(x^2 -y^2) = ?$
2023久留米大学附設高等学校
26次式の因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$\displaystyle \sum_{n=0}^{26} x^n=1+x+x^2+・・・・+x^{26}$
この動画を見る
因数分解せよ.
$\displaystyle \sum_{n=0}^{26} x^n=1+x+x^2+・・・・+x^{26}$
大学入試問題#430「これは、よくありそうな綺麗な問題」 福島大学(2013) #式変形
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
ますただ
問題文全文(内容文):
$x=\displaystyle \frac{3+\sqrt{ 13 }}{2}$のとき
$\displaystyle \frac{x^{10}-1}{x^5}$の値を求めよ
出典:2013年福島大学 入試問題
この動画を見る
$x=\displaystyle \frac{3+\sqrt{ 13 }}{2}$のとき
$\displaystyle \frac{x^{10}-1}{x^5}$の値を求めよ
出典:2013年福島大学 入試問題
2023高校入試解説13問目 因数分解昭和学院秀英
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^2 - 4b^2 +3ab -2bc +2ca$
2023昭和学院秀英高等学校
この動画を見る
因数分解せよ
$a^2 - 4b^2 +3ab -2bc +2ca$
2023昭和学院秀英高等学校
素数問題
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
素数$(p,q)$の組をすべて求めよ.
$-p^3+4p^2+7p-1=q^2$
この動画を見る
素数$(p,q)$の組をすべて求めよ.
$-p^3+4p^2+7p-1=q^2$
整数問題
単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$(4n-1)^{2n+1}+(4n+1)^{2n-1}$は$32n^2$で割り切れることを示せ.
この動画を見る
nを自然数とする.
$(4n-1)^{2n+1}+(4n+1)^{2n-1}$は$32n^2$で割り切れることを示せ.
2023高校入試解説9問目 和と差の積は二乗の差 日大習志野
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$(1+\sqrt 2)(1+\sqrt 8)(1-\frac{1}{\sqrt 2})(1-\frac{1}{\sqrt 8})$
2023日本大学習志野高等学校
この動画を見る
$(1+\sqrt 2)(1+\sqrt 8)(1-\frac{1}{\sqrt 2})(1-\frac{1}{\sqrt 8})$
2023日本大学習志野高等学校
2023共通テスト数学 1A 第1問
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)#共通テスト
指導講師:
鈴木貫太郎
問題文全文(内容文):
第一問,
$\vert x+6 \vert \leqq 2$
$\Box \leqq x \leqq \Box$
$\vert (1-\sqrt3)(a-b)(c-d)+6 \vert 2$
$\Box \leqq (a-b)(c-d) \leqq \boxed{①}$
$(a-b)(c-d)=①$でさらに$(a-c)(b-d)=-3+\sqrt3 $なら $(a-d)(c-b)=\Box $
20232共通テスト過去問
この動画を見る
第一問,
$\vert x+6 \vert \leqq 2$
$\Box \leqq x \leqq \Box$
$\vert (1-\sqrt3)(a-b)(c-d)+6 \vert 2$
$\Box \leqq (a-b)(c-d) \leqq \boxed{①}$
$(a-b)(c-d)=①$でさらに$(a-c)(b-d)=-3+\sqrt3 $なら $(a-d)(c-b)=\Box $
20232共通テスト過去問
42を素因数分解の正答率 全国学力調査
大阪公立大 7の80乗の下5桁
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 7^{80}$の下5桁を求めよ.
大阪公立大過去問
この動画を見る
$ 7^{80}$の下5桁を求めよ.
大阪公立大過去問
整式の剰余 2通りの解法で 中京大
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 3x^{3n+2}をx^2+x+1$で割った余りを求めよ.
中京大過去問
この動画を見る
$ 3x^{3n+2}をx^2+x+1$で割った余りを求めよ.
中京大過去問
因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x(y^3-z^3)+y(z^3-x^3)+z(x^3-y^3)$
これを因数分解せよ.
創価大過去問
この動画を見る
$ x(y^3-z^3)+y(z^3-x^3)+z(x^3-y^3)$
これを因数分解せよ.
創価大過去問
灘高校 因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ a(x+2y)+b(x+3y)=-x+y$となるa,bを求めよ.
$x^2+5xy+6y^2-x+y+k$は$k=\Box$のとき,$\Box$と1次式×1次式に因数分解できる.
これを解け.
灘高校過去問
この動画を見る
$ a(x+2y)+b(x+3y)=-x+y$となるa,bを求めよ.
$x^2+5xy+6y^2-x+y+k$は$k=\Box$のとき,$\Box$と1次式×1次式に因数分解できる.
これを解け.
灘高校過去問
式の変形 これ知らない大学受験生は落ちます
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a^2+b^2 =$
$a^3+b^3 =$
$a^2+b^2+c^2 =$
$a^3+b^3+c^3 =$
この動画を見る
$a^2+b^2 =$
$a^3+b^3 =$
$a^2+b^2+c^2 =$
$a^3+b^3+c^3 =$
福田の1.5倍速演習〜合格する重要問題046〜一橋大学2017年度文系第3問〜次数のわからない整式の決定問題
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
P(0)=1, P(x+1)-P(x)=2xを満たす整式P(x)を求めよ。
2017一橋大学文系過去問
この動画を見る
P(0)=1, P(x+1)-P(x)=2xを満たす整式P(x)を求めよ。
2017一橋大学文系過去問
√の中に√入れたくないよね。式の値 巣鴨高校
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a=\sqrt 6 +\sqrt 2,b=\sqrt 6 - \sqrt 2$
$\frac{\sqrt a +\sqrt b}{\sqrt a - \sqrt b} = ?$
巣鴨高等学校
この動画を見る
$a=\sqrt 6 +\sqrt 2,b=\sqrt 6 - \sqrt 2$
$\frac{\sqrt a +\sqrt b}{\sqrt a - \sqrt b} = ?$
巣鴨高等学校
あの公式で一撃!これ因数分解できる? #Shorts
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$(a-b)^3+(b-c)^3-3(a-b)(b-c)(c-a)$
因数分解せよ。
この動画を見る
$(a-b)^3+(b-c)^3-3(a-b)(b-c)(c-a)$
因数分解せよ。
式の値
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+2x+3=0$のとき,$\dfrac{x^3}{x^6-11x^3+27}$の値を求めよ.
この動画を見る
$x^2+2x+3=0$のとき,$\dfrac{x^3}{x^6-11x^3+27}$の値を求めよ.
【高校数学】いろんな方法で因数分解してみた #Shorts
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x^5+x^4+x^3+x^2+x+1$
因数分解せよ。
この動画を見る
$x^5+x^4+x^3+x^2+x+1$
因数分解せよ。
出題者の意図を汲みとるだけの問題。灘高の計算
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$①(2\sqrt2-3)^2=?$
$②\sqrt{\sqrt{(10-7\sqrt2}^2)-\sqrt{(7-5\sqrt2}^2)}=?$
?を求めよ.
灘高校過去問
この動画を見る
$①(2\sqrt2-3)^2=?$
$②\sqrt{\sqrt{(10-7\sqrt2}^2)-\sqrt{(7-5\sqrt2}^2)}=?$
?を求めよ.
灘高校過去問
式の値
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+\dfrac{1}{a}=-1$のとき,$(a-1)^{12}$の値を求めよ.
この動画を見る
$a+\dfrac{1}{a}=-1$のとき,$(a-1)^{12}$の値を求めよ.
秒でできちゃった
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{1-a}+\dfrac{b}{1-b}+\dfrac{c}{1-c}=1$のとき,
$\dfrac{1}{1-a}+\dfrac{1}{1-b}+\dfrac{1}{1-c}$の値を求めよ.
この動画を見る
$ \dfrac{1}{1-a}+\dfrac{b}{1-b}+\dfrac{c}{1-c}=1$のとき,
$\dfrac{1}{1-a}+\dfrac{1}{1-b}+\dfrac{1}{1-c}$の値を求めよ.
解けるように作られた根号方程式
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^2+7x-5=5\sqrt{x^3-1}$
これの実数解を求めよ.
この動画を見る
$ x^2+7x-5=5\sqrt{x^3-1}$
これの実数解を求めよ.
Factorizationよどみなく因数分解してくれ!
和歌山県立医大ナイスな整数問題
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
nは4桁の自然数$n^2$の下4桁がnとするとき,nをすべて求めよ.
和歌山県立医大過去問
この動画を見る
nは4桁の自然数$n^2$の下4桁がnとするとき,nをすべて求めよ.
和歌山県立医大過去問
ただの2次方程式⁉️ just a quadratic equation⁉️
ナイスな整数問題
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2-a^2b^2+10ab-16$が素数となるような整数(a.b)をすべて求めよ.
この動画を見る
$ a^2+b^2-a^2b^2+10ab-16$が素数となるような整数(a.b)をすべて求めよ.
整数問題(類・東工大)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$a_n=19^n+(-1)^{n-1}・3^{6n-5}$
すべての$a_n$を割り切る素数をすべて求めよ.
東工大(類)過去問
この動画を見る
nを自然数とする.
$a_n=19^n+(-1)^{n-1}・3^{6n-5}$
すべての$a_n$を割り切る素数をすべて求めよ.
東工大(類)過去問
連立三元三次方程式
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3=xyz+2 \\
y^3=xyz+3 \\\
z^3=xyz-5
\end{array}
\right.
\end{eqnarray}$
実数解を解け.
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^3=xyz+2 \\
y^3=xyz+3 \\\
z^3=xyz-5
\end{array}
\right.
\end{eqnarray}$
実数解を解け.