内心・外心・重心とチェバ・メネラウス - 質問解決D.B.(データベース)

内心・外心・重心とチェバ・メネラウス

これなに?

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
これなに?
※問題・図は動画内参照
この動画を見る 

東大生のワイヤレスイヤホンの見付け方が凄すぎた

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ワイヤレスイヤホンを落としたときの見つけ方
三角形の外心の話です
この動画を見る 

内心と比

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AI:ID=?
*図は動画内参照
この動画を見る 

2024年共通テスト徹底解説〜数学ⅠA第5問図形の性質〜福田の入試問題解説

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第5 問(1) $\triangle AQD$と直線CEに着目すると$\dfrac{QR}{RD}・\dfrac{DS}{SA}・\dfrac{ア}{CQ}=1$が成り立つのでQR:RD=イ:ウ となる。また、$\triangle AQD$と直線BEに着目するとQB:BD=エ:オ となる。
したがって、BQ:QR:RD=エ:イ:ウとなる個tが分かる。
(2)5点P,Q,R,S,Tが同一演習場にあるとし、AC=8とする。
(i)5点A,P,Q,S,Tに着目すると、AT:ST=1:2より、AT=$\sqrt{ カ }$となる。さらに5点D,Q,R,S,Tに着目すると$DR=4\sqrt{ 3 }$となることがわかる。
( 2 ) 3 点 A , B, C を通る円と点 D の位置関係を次の構想に基づいて調べよう。
構想:線分 AC と BD の交点 Q に着目し、 AQ $\cdot$ CQ と BQ $\cdot$ DQ の大小を比べる。
まず AQ $\cdot$ CQ = 5 $\cdot$ 3 = 15 かっ BQ $\cdot$ DQ =キクであるから
AQ$\cdot$CQ ケ BQ$\cdot$DQ $\cdots$①
が成り立つ。また、3点A,B,Cを通る\と直線BDとの交点のうち、Bと異なる点をXとするとAQ$\cdot$CQ ケ BQ$\cdot$XQ $\cdots$②
①②の左辺は同じなので①②の右辺と比べることによりXQ サ DQが得られる。したがって点DはA,B,Cを通る円の シ にある。
(2)3 点 C , D , E を通る円と 2 点 A , B の位置関係について調べよう。この星形の図形において、さらにCR = RS = SE = 3 となることがわかる。したがって、点 A は 3 点 C, E, D を通る円の ス にあり、点 B は 3 点 C, E, D を通る円の セ にある。

2024共通テスト過去問
この動画を見る 

福田のおもしろ数学012〜10秒チャレンジ〜重心によって分割される3つの三角形の面積が等しい証明

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
三角形において、その重心 G で分割された 3 つの三角形の面積は等しいことを証明せよ.
※図は動画内参照
この動画を見る 

重心ではありませんよ。

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
点Hは△ABCの
①外心
②内心
③重心

*図は動画内参照
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

【短時間でポイントチェック!!】内接円や外接円の三角形の面積〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
※図は動画内参照
①Aは?
②CDは?
③四角形ABCDの面積は?

※図は動画内参照
①$\cos A$
②△ABCの面積$S$
③△ABCの内接円の半径$r$
この動画を見る 

メネラウスの定理が間違ってる?との指摘について

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
あきとんとんの本「見るだけで理解が加速する 数学公式図鑑」についての問い合わせの回答です。他にも疑問に思ってそうだったので動画にしました.
この動画を見る 

福田の数学〜九州大学2023年文系第2問〜2直線のなす角と外接円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xy平面上の曲線C:$y$=$x^3$-$x$ を考える。変数$t$>0に対して、曲線C上の点A($t$, $t^3$-$t$)における接線を$l$とする。直線$l$と直線$y$=-$x$の交点をB、三角形OABの外接円の中心をPとする。以下の問いに答えよ。
(1)点Bの座標を$t$を用いて表せ。
(2)θ=$\angle$OBAとする。$\sin^2\theta$を$t$を用いて表せ。
(3)$f(t)$=$\frac{OP}{OA}$とする。$t$>0のとき、$f(t)$を最小にする$t$の値と$f(t)$の最小値を求めよ。

2023九州大学文系過去問
この動画を見る 

忘れがち!?三角形の傍心ってなに? #Shorts

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形の傍心に関して解説していきます。
この動画を見る 

【まとめ】三角形の垂心の特徴をまとめてみた! #Shorts

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形の垂心の特徴について解説していきます。
この動画を見る 

【重要】頻出の三角形の内心の特徴をまとめてみた #Shorts

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形の内心に関して解説していきます。
この動画を見る 

【重要】三角形の外心!特徴をまとめてみた #Shorts

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形の外心の特徴について解説していきます。
この動画を見る 

【数学】三角形の五心!特徴をまとめてみた(重心 編) #Shorts

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形の五心(重心)に関して解説していきます。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#内心・外心・重心とチェバ・メネラウス#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ.
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第2問〜平面幾何と3次関数の増減

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$AB=AC=1,\ BC=a$の二等辺三角形$ABC$の内接円を$I$、外接円を$O$とする。
ただし、$0 \lt a \lt \sqrt2$ である。また、三角形$ABC$と円$I$の3つの接点を頂点とする
三角形を$T$、3点$A,\ B,\ C$で円$O$に外接する三角形を$U$とする。次の問いに答えよ。
(1)三角形$T$の、$BC$に平行な辺の長さ$t$を$a$で表せ。
(2)三角形$U$の、$BC$に平行な辺の長さ$u$を$a$で表せ。
(3)$\frac{t}{u}=p$とする。$p$が最大となる$a$の値と、そのときの$p$の値を求めよ。

2022早稲田大学社会科学部過去問
この動画を見る 

メネラウスの定理でも良いと思います。近江高校(滋賀)

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BF:FC=?
*図は動画内参照

近江高等学校
この動画を見る 

チェバの定理を使いますか?

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
チェバの定理に関して解説していきます.
この動画を見る 

【数A】図形の性質:<これを見て思い出そう>三角形の重心の性質 ~何対何?~

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形の重心における、頂点→重心:重心→中点の線分の比を導出する動画になります。
この動画を見る 

チェバの定理使わずに解ける? 香川誠陵 2022入試問題解説23問目

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
チェバの定理は使わない
AF:FCを求めよ
*図は動画内参照

2022香川誠陵高等学校
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題5。平面幾何の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第5問 \triangle ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。\\
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。\\
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。\\
(1)点Dは線分AGの中点であるとする。このとき、\triangle ABCの形状に関係なく\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
である。また、点Fの位置に関係なく\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},\\
\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}であるので、常に\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }\\
\\
\\
\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }の解答群\\
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ\\
\\
(2)AB=9, BC=8, AC=6とし、(1)と同様に、点Dは線分AGの中点であるとする。\\
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、\\
\\
AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ APであるから\\
\\
AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}であり、CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}である。\\
\\
(3)\triangle ABCの形状や点Fの位置に関係なく、常に\frac{BP}{AP}+\frac{CQ}{AQ}=10となるのは\\
\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}のときである。

\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

2通りで解説!!京都女子

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
CF=?
*図は動画内参照

京都女子高等学校
この動画を見る 

中学入試・高校入試頻出メネラウスの定理は使う?

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
メネラウスの定理が定期試験に出る頻度に関して解説していきます.
この動画を見る 

【順番を守れば怖くない!】チェバ・メネラウスの定理はこう攻略する!〔高校数学 数学〕

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
チェバ・メネラウスの定理について解説します。
この動画を見る 

【演習編!】平面図形の知識を演習で効率的に整理!〔高校数学 数学〕

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
平面図形の解き方について解説します。
この動画を見る 

福田のわかった数学〜高校1年生059〜図形の計量(10)正四面体の各辺に接する球の半径

アイキャッチ画像
単元: #数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(10)\\
1辺の長さがaの正四面体の全ての辺に接する球の半径を求めよ。
\end{eqnarray}
この動画を見る 

【重心・内心・外心】三角形の○心はこう覚える!〔高校数学 数学〕

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
三角形の重心・内心・外心について解説します。
この動画を見る 

福田のわかった数学〜高校1年生第47回。三角形への応用(4)内心

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
右の図において$I$は$\triangle ABC$の内心.$AB=5,BC=10,CA=7$のとき,$AI=?$
この動画を見る 

【数A】図形の性質:高3 5月K塾共通テスト 数学IA第5問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、$AB=3,AC=6,\angle BAC=90°$であるとき、$BC=(ア)\sqrt{(イ)}$である。Aを中心とし、Bを通る円をKとし、円Kと直線ACの交点のうち辺AC上にある方をD、もう一方をEとする。また、円Kと直線BCの交点でBと異なるものをFとする。このとき、CE=(ウ)であり、方べきの定理を用いると、$CF=\dfrac{(エ)\sqrt{(オ)}}{(カ)}$とわかるから$\dfrac{BF}{FC}=\dfrac{(キ)}{(ク)}$である。さらに、直線EFと辺ABの交点をP、直線EFと線分BCの交点をQとすると、$\dfrac{BQ}{QD}=(ケ)$であり、△BFQの面積は$\dfrac{(コ)}{(サシ)}$である。また、△CPQの面積は$\dfrac{(ス)}{(セ)}$である。
この動画を見る 
PAGE TOP