整数の性質
【高校数学】整数の性質 約数の総和に関する問題はこうやって解く!
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$N=p^2q$($p,q$は異なる素数)と表される数で
約数の総和が$2N$に等しいものをすべて求めよ。
この動画を見る
$N=p^2q$($p,q$は異なる素数)と表される数で
約数の総和が$2N$に等しいものをすべて求めよ。
福田の数学〜北海道大学2024年文系第1問〜約数の個数と総和
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ 次の問いに答えよ。
(1)自然数$m$, $n$について、$2^m・3^n$の正の約数の個数を求めよ。
(2)6912の正の約数のうち、12で割り切れないものの総和を求めよ。
この動画を見る
$\Large{\boxed{1}}$ 次の問いに答えよ。
(1)自然数$m$, $n$について、$2^m・3^n$の正の約数の個数を求めよ。
(2)6912の正の約数のうち、12で割り切れないものの総和を求めよ。
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a,bは自然数
ab+a+b=3598
$(a-b)^2=?$
この動画を見る
a,bは自然数
ab+a+b=3598
$(a-b)^2=?$
大学入試問題#779「コメントするなら普通の問題」 青山学院大学(2021) #整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
ますただ
問題文全文(内容文):
$\sqrt{ n^2+2n+16 }$ が整数となるような整数$n$をすべて求めよ
出典:2021年青山学院大学
この動画を見る
$\sqrt{ n^2+2n+16 }$ が整数となるような整数$n$をすべて求めよ
出典:2021年青山学院大学
福田の数学〜慶應義塾大学2024年薬学部第1問(5)〜整数解と素数の性質
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
この動画を見る
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
約数の個数とその総和 2024明大中野
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
・正の約数を3個だけ持つ
・その約数の総和は871
この自然数を求めよ。
2024明治大学付属中野高等学校
この動画を見る
・正の約数を3個だけ持つ
・その約数の総和は871
この自然数を求めよ。
2024明治大学付属中野高等学校
大学入試問題#773「綺麗な良問」 青山学院大学(2019) #整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
ますただ
問題文全文(内容文):
素数$p.q$および自然数$n$に対し
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{pq}=\displaystyle \frac{1}{n}$
が成り立つような$(p,q,n)$の組をすべて求めよ
出典:2019年青山学院大学
この動画を見る
素数$p.q$および自然数$n$に対し
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{pq}=\displaystyle \frac{1}{n}$
が成り立つような$(p,q,n)$の組をすべて求めよ
出典:2019年青山学院大学
2024山口大 1の10乗根のナイスな問題
単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2Z^4+(1-\sqrt{ 5 })Z^2+2=0$であるとき
(1)$Z^{10}=1$であることを示せ
(2)$\cos \displaystyle \frac{\pi}{5} \cos \displaystyle \frac{2\pi}{5}=\displaystyle \frac{1}{4}$を示せ
出典:2024年山口大学数学 過去問
この動画を見る
$2Z^4+(1-\sqrt{ 5 })Z^2+2=0$であるとき
(1)$Z^{10}=1$であることを示せ
(2)$\cos \displaystyle \frac{\pi}{5} \cos \displaystyle \frac{2\pi}{5}=\displaystyle \frac{1}{4}$を示せ
出典:2024年山口大学数学 過去問
福田のおもしろ数学084〜85をいくつかの和で一意的に表す
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
85は7つの数
1,2,4,8,16,32,64
のいくつかの和としてただ1通りに表されることを示せ。
この動画を見る
85は7つの数
1,2,4,8,16,32,64
のいくつかの和としてただ1通りに表されることを示せ。
一橋の問題をちょっと変えてみた
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$正の整数
$100m^2-49n^2=20!$を満たす$(m,n)$の組は何組?
この動画を見る
$m,n$正の整数
$100m^2-49n^2=20!$を満たす$(m,n)$の組は何組?
2024一橋大後期数学 整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$正の整数
$m^2-n^2=10!$を満たす$(m,n)$の組は何組?
出典:2024年一橋大学後期数学 過去問
この動画を見る
$m,n$正の整数
$m^2-n^2=10!$を満たす$(m,n)$の組は何組?
出典:2024年一橋大学後期数学 過去問
48と75を指輪に掘る意味は?
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
48と75が婚約数であることについて説明
この動画を見る
48と75が婚約数であることについて説明
京都大 2024文系数学
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
ある自然数を八進法,九進法,十進法で表したら桁数が同じ最大の自然数は?
$0.3010<\log_{10}{3}<0.3011$
$0.4771<\log_{10}{2}<0.4772$
2024京都大過去問
この動画を見る
ある自然数を八進法,九進法,十進法で表したら桁数が同じ最大の自然数は?
$0.3010<\log_{10}{3}<0.3011$
$0.4771<\log_{10}{2}<0.4772$
2024京都大過去問
東大 文系数学 2024
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0.3<\log_{10}{2}<0.31$
を用いてよい
(1)$5^n>10^{19}$
となる最小の自然数n
(2)$5^m+4^m>10^{19}$
となる最小の自然数m
2024東大文系過去問
この動画を見る
$0.3<\log_{10}{2}<0.31$
を用いてよい
(1)$5^n>10^{19}$
となる最小の自然数n
(2)$5^m+4^m>10^{19}$
となる最小の自然数m
2024東大文系過去問
どんな約分にも使える裏技「よこよこ法」を教育系インフルエンサーに教えました【ラオ先生×まさし×あきとんとん】
単元:
#算数(中学受験)#計算と数の性質#数の性質その他#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)$\displaystyle \frac{51}{68}$
(2)$\displaystyle \frac{161}{115}$
(3)$\displaystyle \frac{5080}{5207}$
この動画を見る
(1)$\displaystyle \frac{51}{68}$
(2)$\displaystyle \frac{161}{115}$
(3)$\displaystyle \frac{5080}{5207}$
2024 慶應女子最初の一問 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a^2+b^2-2a-4b=20$を満たす
自然数(a,b)の組をすべて求めよ
2024慶應義塾女子高等学校
この動画を見る
$a^2+b^2-2a-4b=20$を満たす
自然数(a,b)の組をすべて求めよ
2024慶應義塾女子高等学校
福田の数学〜慶應義塾大学2024年理工学部第1問(1)〜6番目に大きい約数と6乗根に最も近い自然数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$(1)2024の約数の中で1番大きいものは2024だが,6番目に大きいものは$\boxed{ア}$である.
2024の6乗根に最も近い自然数は$\boxed{イ}$である.
2024慶應義塾大学理工過去問
この動画を見る
$\boxed{1}$(1)2024の約数の中で1番大きいものは2024だが,6番目に大きいものは$\boxed{ア}$である.
2024の6乗根に最も近い自然数は$\boxed{イ}$である.
2024慶應義塾大学理工過去問
福田の数学〜慶應義塾大学2024年理工学部第1問(1)〜6番目に大きい約数と6乗根に最も近い自然数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
( 1 ) 2024 の約数の中で 1 番大きいものは 2024 だが、 6 番目に大きいものは ア である。 2024 の 6 乗根に最も近い自然数は イ である。
この動画を見る
( 1 ) 2024 の約数の中で 1 番大きいものは 2024 だが、 6 番目に大きいものは ア である。 2024 の 6 乗根に最も近い自然数は イ である。
福田のおもしろ数学055〜自然数を連続整数の和で表す方法〜偶奇性に注目しよう
整数の問題& 場合の数 2024早稲田実業
単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
1⃣2⃣3⃣4⃣の4枚のカードを
$▢^▢×▢▢$のように並べる
式の値が3の倍数となる並べ方は何通り?
2024早稲田実業学校
この動画を見る
1⃣2⃣3⃣4⃣の4枚のカードを
$▢^▢×▢▢$のように並べる
式の値が3の倍数となる並べ方は何通り?
2024早稲田実業学校
綺麗な問題。それしかないことを示すのが肝
2進法ののび太ってなに?
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
二進法ののび太を使って二進法の原理を解説をします。
この動画を見る
二進法ののび太を使って二進法の原理を解説をします。
福田のおもしろ数学052〜余りの問題はこれができなきゃダメ〜余りを求める
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$1111^{ 2018 }$ を 11111 で割った余りを求めてください。
この動画を見る
$1111^{ 2018 }$ を 11111 で割った余りを求めてください。
整数部分 2024灘高校の最初の1問
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt {15} + \sqrt{10} $の整数部分は?
灘高等学校2024
この動画を見る
$\sqrt {15} + \sqrt{10} $の整数部分は?
灘高等学校2024
福田の数学〜東京大学2018年理系第2問〜数列の増減とユークリッドの互除法
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$a_{ 1 },a_{ 2 }・・・$を
$a_{ n }=\dfrac{2_{ n }+{}_1 \mathrm{ C }_n}{n!}$(n=1,2,・・・)
で定める
(1)$n \geqq 2$とする。$\dfrac{a_{n}}{a_{n-1}}$を規約分数$\dfrac{q_{n}}{p_{n}}$として表したときの分母$p_{n} \geqq 1$と分子$q_{n}$を求めよ。
(2)$a_{n}$が整数となる$n\geqq1$をすべて求めよ。
2018東京大学理過去問
この動画を見る
$a_{ 1 },a_{ 2 }・・・$を
$a_{ n }=\dfrac{2_{ n }+{}_1 \mathrm{ C }_n}{n!}$(n=1,2,・・・)
で定める
(1)$n \geqq 2$とする。$\dfrac{a_{n}}{a_{n-1}}$を規約分数$\dfrac{q_{n}}{p_{n}}$として表したときの分母$p_{n} \geqq 1$と分子$q_{n}$を求めよ。
(2)$a_{n}$が整数となる$n\geqq1$をすべて求めよ。
2018東京大学理過去問
福田のおもしろ数学047〜これができたら天才〜ガウス記号のついた数の和
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\left[\dfrac{13×1}{2024}\right]+\left[\dfrac{13×2}{2024}\right]+\left[\dfrac{13×3}{2024}\right]+・・・+\left[\dfrac{13×2023}{2024}\right]$を計算してください。
ただし、$[x]$は$x$を超えない最大の整数を表します。
この動画を見る
$\left[\dfrac{13×1}{2024}\right]+\left[\dfrac{13×2}{2024}\right]+\left[\dfrac{13×3}{2024}\right]+・・・+\left[\dfrac{13×2023}{2024}\right]$を計算してください。
ただし、$[x]$は$x$を超えない最大の整数を表します。
福田のおもしろ数学044〜みんな苦手なn進法〜10進法と5進法で同じ桁数になる数
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
10 進法で表しても、 5 進法で表しても、桁数が変わらない正の整数は何個あるか。
この動画を見る
10 進法で表しても、 5 進法で表しても、桁数が変わらない正の整数は何個あるか。
整数問題 2024福岡大附属大濠
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x-1が9の倍数であるとき$x^2$を3で割った余りは?
2024福岡大学附属大濠高等学校
この動画を見る
x-1が9の倍数であるとき$x^2$を3で割った余りは?
2024福岡大学附属大濠高等学校