加法定理とその応用
福田のわかった数学〜高校2年生086〜三角関数(25)重要な変形(3)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(25) 重要な変形(3)\\
外接円の半径が1の\triangle ABCがある。\\
この三角形の内接円の半径は\frac{1}{2}以下であることを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(25) 重要な変形(3)\\
外接円の半径が1の\triangle ABCがある。\\
この三角形の内接円の半径は\frac{1}{2}以下であることを示せ。
\end{eqnarray}
福田のわかった数学〜高校2年生085〜三角関数(24)重要な変形(2)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(24) 重要な変形(2)\\
\triangle ABCにおいて\\
\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\\
を証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(24) 重要な変形(2)\\
\triangle ABCにおいて\\
\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\\
を証明せよ。
\end{eqnarray}
福田のわかった数学〜高校2年生084〜三角関数(23)重要な変形(1)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(23) 重要な変形(1)\\
\triangle ABCにおいて\\
\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C\\
を証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(23) 重要な変形(1)\\
\triangle ABCにおいて\\
\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C\\
を証明せよ。
\end{eqnarray}
【数Ⅱ】三角関数:相加相乗その5
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
y軸上の2つの点、A(0,2)、B(0,8)とx軸上の点P(a,0)(a>0とする)について考える。このとき、∠APBを最大とするaの値を求めよ。
この動画を見る
y軸上の2つの点、A(0,2)、B(0,8)とx軸上の点P(a,0)(a>0とする)について考える。このとき、∠APBを最大とするaの値を求めよ。
【数Ⅱ】式と証明:相加相乗平均その3
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a\gt 0$のとき $\dfrac{a}{a^2+4}$の最小値を求めよ。
この動画を見る
$a\gt 0$のとき $\dfrac{a}{a^2+4}$の最小値を求めよ。
福田のわかった数学〜高校2年生083〜三角関数(23)18°系の三角比(3)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(22) 18°系の三角比(3)\\
(1)\cos5\theta=f(\cos\theta)を満たす多項式f(x)を求めよ。\\
\\
(2)\alpha=18°のとき次の等式を示せ。\\
\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(22) 18°系の三角比(3)\\
(1)\cos5\theta=f(\cos\theta)を満たす多項式f(x)を求めよ。\\
\\
(2)\alpha=18°のとき次の等式を示せ。\\
\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}
\end{eqnarray}
福田のわかった数学〜高校2年生082〜三角関数(21)18°系の三角比(2)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(21) 18°系の三角比(2)\\
0 \lt \theta \lt \frac{\pi}{2}, \cos2\theta=\cos3\thetaのとき\\
(1)\thetaを求めよ。\\
(2)\cos\thetaを求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(21) 18°系の三角比(2)\\
0 \lt \theta \lt \frac{\pi}{2}, \cos2\theta=\cos3\thetaのとき\\
(1)\thetaを求めよ。\\
(2)\cos\thetaを求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生081〜三角関数(20)18°系の三角比(1)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(20) 18°系の三角比(1)\\
\sin\frac{\pi}{10}の値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(20) 18°系の三角比(1)\\
\sin\frac{\pi}{10}の値を求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(19) なす角(3)\hspace{190pt}\\
2点A(0,2), B(0,8)がある。点P(a,0) (a \gt 0)について\angle APBが最大となるaは?
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(19) なす角(3)\hspace{190pt}\\
2点A(0,2), B(0,8)がある。点P(a,0) (a \gt 0)について\angle APBが最大となるaは?
\end{eqnarray}
福田のわかった数学〜高校2年生079〜三角関数(18)2直線のなす角(2)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(18) なす角(2)\\
\\
y=3x+1と\frac{\pi}{6}の角をなし、原点を通る直線の方程式を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(18) なす角(2)\\
\\
y=3x+1と\frac{\pi}{6}の角をなし、原点を通る直線の方程式を求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生078〜三角関数(17)2直線のなす角(1)
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(17) なす角(1)\\
2直線y=3x-1, y=-2x+4\\
のなす角\theta(0 \lt \theta \lt \frac{\pi}{2})を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(17) なす角(1)\\
2直線y=3x-1, y=-2x+4\\
のなす角\theta(0 \lt \theta \lt \frac{\pi}{2})を求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生074〜三角関数(13)三角関数の最大最小
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(13) 最大最小(3)\hspace{100pt}\\
y=a(\sin x+\cos x)+\sin2xの最大値、最小値を求めよ。ただし、a \gt 0とする。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(13) 最大最小(3)\hspace{100pt}\\
y=a(\sin x+\cos x)+\sin2xの最大値、最小値を求めよ。ただし、a \gt 0とする。
\end{eqnarray}
福田のわかった数学〜高校2年生073〜三角関数(12)三角関数の最大最小
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(12) 最大最小(2)\hspace{40pt}\\
y=\cos2x+2a\sin x+1\\
の0 \leqq x \leqq \piにおける最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(12) 最大最小(2)\hspace{40pt}\\
y=\cos2x+2a\sin x+1\\
の0 \leqq x \leqq \piにおける最大値、最小値を求めよ。
\end{eqnarray}
福田のわかった数学〜高校2年生072〜三角関数(11)三角関数の最大最小
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(11) 最大最小(1)\\
y=3\cos x+4\sin x (0 \leqq x \leqq \frac{\pi}{2})\\
(1)右辺を\cosで合成せよ。\\
(2)yの最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 三角関数(11) 最大最小(1)\\
y=3\cos x+4\sin x (0 \leqq x \leqq \frac{\pi}{2})\\
(1)右辺を\cosで合成せよ。\\
(2)yの最大値、最小値を求めよ。
\end{eqnarray}
【数Ⅱ】三角関数:方程式6x²-xy-y²=0は交わる2直線を表す。このとき、2直線のなす角θ(0≦θ≦π/2)を求めよ。
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$6x^2-xy-y^2=0$は交わる2直線を表す。このとき、2直線のなす角$\theta(0\leqq\theta\leqq \dfrac{\pi}{2}$)を求めよ。
この動画を見る
方程式$6x^2-xy-y^2=0$は交わる2直線を表す。このとき、2直線のなす角$\theta(0\leqq\theta\leqq \dfrac{\pi}{2}$)を求めよ。
【数Ⅱ】三角関数:方程式sin(θ+40°)=sinθ(ただし0°≦θ≦90°)をみたすθを求めよ。
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$\sin(\theta+40°)=\sin\theta$(ただし$0°\leqq\theta\leqq90°$)をみたす$\theta$を求めよ。
この動画を見る
方程式$\sin(\theta+40°)=\sin\theta$(ただし$0°\leqq\theta\leqq90°$)をみたす$\theta$を求めよ。
福田の数学〜立教大学2021年理学部第2問〜2直線のなす角の最大
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 座標平面において、放物線y=x^2上の点でx座標がp,p+1,p+2である点を\\
それぞれP,Q,Rとする。また、直線PQの傾きをm_1、直線PRの傾きをm_2、\\
\angle QPR=\thetaとする。\\
\\
(1)m_1,\ m_2をそれぞれ\ p\ を用いて表せ。\\
(2)pが実数全体を動くとき、m_1m_2の最小値を求めよ。\\
(3)\tan\thetaを\ p\ を用いて表せ。\\
(4)pが実数全体を動くとき、\thetaが最大になる\ p\ の値を求めよ。
\end{eqnarray}
2021立教大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} 座標平面において、放物線y=x^2上の点でx座標がp,p+1,p+2である点を\\
それぞれP,Q,Rとする。また、直線PQの傾きをm_1、直線PRの傾きをm_2、\\
\angle QPR=\thetaとする。\\
\\
(1)m_1,\ m_2をそれぞれ\ p\ を用いて表せ。\\
(2)pが実数全体を動くとき、m_1m_2の最小値を求めよ。\\
(3)\tan\thetaを\ p\ を用いて表せ。\\
(4)pが実数全体を動くとき、\thetaが最大になる\ p\ の値を求めよ。
\end{eqnarray}
2021立教大学理工学部過去問
【高校数学】3倍角の公式~簡単に導出できます~ 4-13.5【数学Ⅱ】
福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小
単元:
#数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 座標平面上に2点A(\frac{5}{8},0),\ B(0,\frac{3}{2})をとる。Lは原点を通る直線で、Lが\\
x軸の正の方向となす角\thetaは0 \leqq \theta \leqq \frac{\pi}{2}の範囲にあるとする。ただし、角\thetaの\\
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を\\
d_A、点Bと直線Lの距離をd_Bとおく。このとき、\\
\\
d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta\\
\\
である。\thetaが0 \leqq \theta \leqq \frac{\pi}{2}の範囲を動くとき、d_A+d_Bの最大値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
\\
最小値は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。
\end{eqnarray}
2021明治大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)\ 座標平面上に2点A(\frac{5}{8},0),\ B(0,\frac{3}{2})をとる。Lは原点を通る直線で、Lが\\
x軸の正の方向となす角\thetaは0 \leqq \theta \leqq \frac{\pi}{2}の範囲にあるとする。ただし、角\thetaの\\
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を\\
d_A、点Bと直線Lの距離をd_Bとおく。このとき、\\
\\
d_A+d_B=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\sin\theta+\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\cos\theta\\
\\
である。\thetaが0 \leqq \theta \leqq \frac{\pi}{2}の範囲を動くとき、d_A+d_Bの最大値は\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}であり、\\
\\
最小値は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。
\end{eqnarray}
2021明治大学理工学部過去問
福田のわかった数学〜高校1年生061〜三角形の形状決定問題(2)
単元:
#数Ⅰ#数Ⅱ#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 三角形の形状決定(2)\\
次の等式が成り立つとき、\triangle ABCはどんな形の三角形か。\\
\sin A\cos A=\sin B\cos B
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 三角形の形状決定(2)\\
次の等式が成り立つとき、\triangle ABCはどんな形の三角形か。\\
\sin A\cos A=\sin B\cos B
\end{eqnarray}
【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問6_三角関数
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
この動画を見る
$\theta$の関数。 $f(\theta)=\dfrac{1}{2\sin2\theta}-\sqrt2k\cos(θ-\dfrac{\pi}{4})+k^2$ がある。ただし、kは正の定数である。
(1)$\sin2\theta,\cos(\theta-\dfrac{\pi}{4})$のそれぞれをsinθ、cosθを用いて表せ。
(2)(i)$f(\theta)$を$(\sin\theta-p)(\cos\theta-q)$ (p,qは定数)の形で表せ。 $(ii)k=\dfrac{\sqrt3}{2}$のとき、方程式$f(\theta)=0$を$0\leqq \theta\lt 2\pi$において解け。
(3)$\theta$の方程式$f(\theta)=0$が$0\leqq\theta\lt 2\pi$において相異なる4個の解をもつようなkの値の範 囲を求めよ。
(4)(3)のとき、$\theta$の方程式$f(\theta)=0$の$0\leqq\theta\lt 2\pi$における最小の解を$\alpha$、最大の解を$\beta$と する。$\alpha+\beta=\dfrac{5\pi}{3}$となるようなkの値を求めよ。
福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線\\
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって\\
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、\\
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である\theta\\
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように\\
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。\\
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、\\
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと\\
ペナルティーエリアの左端までの距離をh(ただし、h \lt aとする)、Pからゴールライン\\
をx、Pの正面から右のゴールポストまでの角度を\alpha、Pの正面から左のゴールポスト\\
までの角を\betaとしたとき、次頁の解放の文章を完成させなさい。\\
\\
(解法)\tan\thetaを最も大きくするxを求める問題と考えることができる。\\
\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}\\
\tan\thetaの逆数を考えると、相加相乗平均の定理より\\
\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}\\
であり、\frac{1}{\tan\theta}が最小、すなわち\tan\thetaが最大となるのはx=\sqrt{\boxed{\ \ ケ\ \ }}のときである。\\
\\
(解法終わり)\\
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、\\
x=\sqrt{\boxed{\ \ コ\ \ }}mのときに、\thetaが最も大きくなることが分かる。
\end{eqnarray}
2021慶應義塾大学総合政策学部過去問
【数Ⅱ】三角関数:加法定理の利用
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sinx - \siny =\dfrac{1}{2} , \cosx - \cosy =\dfrac{1}{3}$ , のとき、$\cos (x-y)$ の値を求めなさい。
この動画を見る
$\sinx - \siny =\dfrac{1}{2} , \cosx - \cosy =\dfrac{1}{3}$ , のとき、$\cos (x-y)$ の値を求めなさい。
【数Ⅱ】三角関数:2021年高3第1回K塾記述模試
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aは実数の定数とし、$0\leqq\theta\lt 2\pi$とする。次の2つの式を考える。
$8a\cos\theta- 8\cos2\theta=a^2+7$…①
$\sin\theta-\cos\theta\gt-1$…②
(1)a=1のとき、方程式①を解け。
(2)不等式②を 解け。
(3)(2)で求めた範囲に①の異なる解がちょうど3個存在するようなaの値の 範囲を求めよ。
この動画を見る
aは実数の定数とし、$0\leqq\theta\lt 2\pi$とする。次の2つの式を考える。
$8a\cos\theta- 8\cos2\theta=a^2+7$…①
$\sin\theta-\cos\theta\gt-1$…②
(1)a=1のとき、方程式①を解け。
(2)不等式②を 解け。
(3)(2)で求めた範囲に①の異なる解がちょうど3個存在するようなaの値の 範囲を求めよ。
福田の数学〜早稲田大学2021年商学部第1問(1)〜三角形と三角関数
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)三角形ABCにおいて、\angle B=2\alpha, \angle C=2\betaとする。\\
\\
\tan\alpha\tan\beta=x, \frac{AB+AC}{BC}=y\\
\\
とするとき、yをxで表すと、y=\boxed{\ \ ア\ \ }となる。
\end{eqnarray}
2021早稲田大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)三角形ABCにおいて、\angle B=2\alpha, \angle C=2\betaとする。\\
\\
\tan\alpha\tan\beta=x, \frac{AB+AC}{BC}=y\\
\\
とするとき、yをxで表すと、y=\boxed{\ \ ア\ \ }となる。
\end{eqnarray}
2021早稲田大学商学部過去問
福田の数学〜早稲田大学2021年理工学部第1問〜2直線のなす角の最小
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。
(2)$\tan\angle APB$を$t$を用いて表せ。
(3)$\angle APB$を最小にする$t$の値を求めよ。
2021早稲田大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$ $xy$平面上の曲線$y=x^3$を$C$とする。$C$上の2点$A(-1,-1), B(1,1)$をとる。
さらに、$C$上で原点$O$と$B$の間に動点$P(t,t^3)(0 \lt t \lt 1)$をとる。このとき、
以下の問いに答えよ。
(1)直線$AP$と$x$軸のなす角を$\alpha$とし、直線$PB$と$x$軸のなす角を$\beta$とするとき、
$\tan\alpha,\tan\beta$を$t$を用いて表せ。ただし、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2},\ 0 \lt \beta \lt \displaystyle \frac{\pi}{2}$とする。
(2)$\tan\angle APB$を$t$を用いて表せ。
(3)$\angle APB$を最小にする$t$の値を求めよ。
2021早稲田大学理工学部過去問
加法定理の証明をベクトルで
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
cosα・cosβ+sinα・sinβ =
この動画を見る
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
cosα・cosβ+sinα・sinβ =
2倍角の公式
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$sin2x=2sinxcosx$
$cos2x=cos^2x-sin^2x$
*図は動画内参照
この動画を見る
$sin2x=2sinxcosx$
$cos2x=cos^2x-sin^2x$
*図は動画内参照
約束記号 C 慶應義塾 2021
単元:
#数学(中学生)#数Ⅱ#三角関数#加法定理とその応用#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a,b,c,d,e,fは0より大きく1より小さい実数
$T(x,y)=\frac{x+y}{1-x \times y}$
$T(a,f) = T(b,e) = T(c,d) = 1$のとき
$(1+a)(1+b)(1+c)(1+d)(1+e)(1+f) =$
2021慶應義塾高等学校
この動画を見る
a,b,c,d,e,fは0より大きく1より小さい実数
$T(x,y)=\frac{x+y}{1-x \times y}$
$T(a,f) = T(b,e) = T(c,d) = 1$のとき
$(1+a)(1+b)(1+c)(1+d)(1+e)(1+f) =$
2021慶應義塾高等学校