微分法と積分法
微分法と積分法
富山県立大 積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=kx$と$y=|x^2-2x|$とで囲まれる2つの部分の面積が等しい$k$の値を求めよ$(0 \gt k \gt 2)$
出典:2009年富山県立大学 過去問
この動画を見る
$y=kx$と$y=|x^2-2x|$とで囲まれる2つの部分の面積が等しい$k$の値を求めよ$(0 \gt k \gt 2)$
出典:2009年富山県立大学 過去問
最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第2問〜微分・積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第2問}$
$a \gt 0$とし、$f(x)=x^2-(4a-2)x+4a^2+1$ とおく。座標平面上で、放物線
$y=x^2+2x+1$ を$C,$放物線$y=f(x)$を$D$とする。また、$l$を$C$と$D$の両方に
接する直線とする。
(1)lの方程式を求めよう。
$l$と$C$は点$(t,$ $t^2+2t+1)$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ ア\ \ }\ t+\boxed{\ \ イ\ \ }\right)\ x$$-t^2+\boxed{\ \ ウ\ \ }$ $\cdots$①
である。また、$l$と$D$は点$(s,$ $f(s))$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ エ\ \ }\ s-\boxed{\ \ オ\ \ }\ +\boxed{\ \ カ\ \ }\right)\ x$$-s^2+\boxed{\ \ キ\ \ }\ a^2+\boxed{\ \ ク\ \ }$ $\cdots$②
である。ここで、①と②は同じ直線を表しているので、$t=\boxed{\ \ ケ\ \ },$
$s=\boxed{\ \ コ\ \ }\ a$が成り立つ。
したがって、$l$の方程式は$y=\boxed{\ \ サ\ \ }\ x+\boxed{\ \ シ\ \ }$である。
(2)二つの放物線$C,D$の交点のx座標は$\boxed{\ \ ス\ \ }$である。
$C$と直線$\ t,$および直線$x=\boxed{\ \ ス\ \ }$で囲まれた図形の面積を$S$とすると
$S=\displaystyle \frac{a^{\boxed{セ}}}{\boxed{\ \ ソ\ \ }}$である。
(3)$a \geqq \displaystyle \frac{1}{2}$とする。二つの放物線$C,D$と直線$l$で囲まれた図形の中で
$0 \leqq x \leqq 1$を満たす部分の面積$T$は、$a \gt \boxed{\ \ タ\ \ }$のとき、$a$の値によらず
$T=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$のとき
$T=-\boxed{\ \ テ\ \ }\ a^3+\boxed{\ \ ト\ \ }\ a^2$$-\boxed{\ \ ナ\ \ }\ a+\displaystyle \frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$
である。
(4)次に、(2),(3)で定めた$S,T$に対して、$U=2T-3S$とおく。$a$が
$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$の範囲を動くとき、$Uはa=\displaystyle \frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$で
最大値$\displaystyle \frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒフ\ \ }}$をとる。
2020センター試験過去問
この動画を見る
${\large第2問}$
$a \gt 0$とし、$f(x)=x^2-(4a-2)x+4a^2+1$ とおく。座標平面上で、放物線
$y=x^2+2x+1$ を$C,$放物線$y=f(x)$を$D$とする。また、$l$を$C$と$D$の両方に
接する直線とする。
(1)lの方程式を求めよう。
$l$と$C$は点$(t,$ $t^2+2t+1)$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ ア\ \ }\ t+\boxed{\ \ イ\ \ }\right)\ x$$-t^2+\boxed{\ \ ウ\ \ }$ $\cdots$①
である。また、$l$と$D$は点$(s,$ $f(s))$において接するとすると、$l$の方程式は
$y=\left(\boxed{\ \ エ\ \ }\ s-\boxed{\ \ オ\ \ }\ +\boxed{\ \ カ\ \ }\right)\ x$$-s^2+\boxed{\ \ キ\ \ }\ a^2+\boxed{\ \ ク\ \ }$ $\cdots$②
である。ここで、①と②は同じ直線を表しているので、$t=\boxed{\ \ ケ\ \ },$
$s=\boxed{\ \ コ\ \ }\ a$が成り立つ。
したがって、$l$の方程式は$y=\boxed{\ \ サ\ \ }\ x+\boxed{\ \ シ\ \ }$である。
(2)二つの放物線$C,D$の交点のx座標は$\boxed{\ \ ス\ \ }$である。
$C$と直線$\ t,$および直線$x=\boxed{\ \ ス\ \ }$で囲まれた図形の面積を$S$とすると
$S=\displaystyle \frac{a^{\boxed{セ}}}{\boxed{\ \ ソ\ \ }}$である。
(3)$a \geqq \displaystyle \frac{1}{2}$とする。二つの放物線$C,D$と直線$l$で囲まれた図形の中で
$0 \leqq x \leqq 1$を満たす部分の面積$T$は、$a \gt \boxed{\ \ タ\ \ }$のとき、$a$の値によらず
$T=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$のとき
$T=-\boxed{\ \ テ\ \ }\ a^3+\boxed{\ \ ト\ \ }\ a^2$$-\boxed{\ \ ナ\ \ }\ a+\displaystyle \frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$
である。
(4)次に、(2),(3)で定めた$S,T$に対して、$U=2T-3S$とおく。$a$が
$\displaystyle \frac{1}{2} \leqq a \leqq \boxed{\ \ タ\ \ }$の範囲を動くとき、$Uはa=\displaystyle \frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$で
最大値$\displaystyle \frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒフ\ \ }}$をとる。
2020センター試験過去問
奈良県立医大 接線

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(P \neq 0)$
$f(x)=x^3+Px+P$の接線で$(1,1)$を通るものがちょうど2本ある。
$P$の値と接線の方程式を求めよ
出典:2013年奈良県立医科大学 過去問
この動画を見る
$(P \neq 0)$
$f(x)=x^3+Px+P$の接線で$(1,1)$を通るものがちょうど2本ある。
$P$の値と接線の方程式を求めよ
出典:2013年奈良県立医科大学 過去問
光文社新書「中学の知識でオイラー公式がわかる」Vol.20 バーゼル問題

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
バーゼル問題
$\displaystyle \frac{1}{1^2}+\displaystyle \frac{1}{2^2}+\displaystyle \frac{1}{3^2}+\displaystyle \frac{1}{4^2}+…+\displaystyle \frac{1}{n^2}=\displaystyle \frac{\pi^2}{6}$
この動画を見る
バーゼル問題
$\displaystyle \frac{1}{1^2}+\displaystyle \frac{1}{2^2}+\displaystyle \frac{1}{3^2}+\displaystyle \frac{1}{4^2}+…+\displaystyle \frac{1}{n^2}=\displaystyle \frac{\pi^2}{6}$
光文社新書「中学の知識でオイラー公式がわかる」Vol 13 eとは何か後編

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n \lt 3$
$\displaystyle \lim_{ h \to 0 } (1+h)^{\displaystyle \frac{1}{h}}$
②$y=e^x$ $y^1=e^x$
③$y=e^x$
$(0,1)$における接線の傾きが1
④$(log_ex)^1=\displaystyle \frac{1}{x}$
この動画を見る
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n \lt 3$
$\displaystyle \lim_{ h \to 0 } (1+h)^{\displaystyle \frac{1}{h}}$
②$y=e^x$ $y^1=e^x$
③$y=e^x$
$(0,1)$における接線の傾きが1
④$(log_ex)^1=\displaystyle \frac{1}{x}$
光文社新書「中学の知識でオイラー公式がわかる」Vol12 eとは何か前編

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n$
②$y=e^x$ $y^1=e^x$
③$y=e^x$
$(0,1)$における接線の傾きが1
④$(log_ex)^1=\displaystyle \frac{1}{x}$
この動画を見る
①$e=\displaystyle \lim_{ n \to \infty } (1+\displaystyle \frac{1}{n})^n$
②$y=e^x$ $y^1=e^x$
③$y=e^x$
$(0,1)$における接線の傾きが1
④$(log_ex)^1=\displaystyle \frac{1}{x}$
光文社新書「中学の知識でオイラーの公式がわかる」Vol.5微分て何?

岐阜大 積分 3次方程式の実数解

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#不定積分・定積分#岐阜大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+ax^2-\displaystyle \int_{-2}^{1} x f(t) dt$
$f(x)=0$が異なる3つの実数解をもつ$a$の範囲を求めよ
出典:2013年岐阜大学 過去問
この動画を見る
$f(x)=2x^3+ax^2-\displaystyle \int_{-2}^{1} x f(t) dt$
$f(x)=0$が異なる3つの実数解をもつ$a$の範囲を求めよ
出典:2013年岐阜大学 過去問
大阪市立大 微分と接線の基本問題

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2-4x$に$(0,k)$から引ける接線の数を求めよ
出典:大阪市立大学 過去問
この動画を見る
$f(x)=x^3+2x^2-4x$に$(0,k)$から引ける接線の数を求めよ
出典:大阪市立大学 過去問
大阪大 区分求積法 ヨビノリ病欠 代講ヤス

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \sum_{k=1}^n \displaystyle \frac{[\sqrt{ 2n^2-k^2 }]}{n^2}$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ
出典:2000年大阪大学 過去問
この動画を見る
$a_n=\displaystyle \sum_{k=1}^n \displaystyle \frac{[\sqrt{ 2n^2-k^2 }]}{n^2}$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ
出典:2000年大阪大学 過去問
鳴門教育大 2直線のなす角

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^3$上の異なる2点$(a,a^3),(b,b^3)$における接線のなす角が$60^{ \circ }$である。
$a$と$b$の関係を式で表せ
出典:鳴門教育大学 過去問
この動画を見る
$y=x^3$上の異なる2点$(a,a^3),(b,b^3)$における接線のなす角が$60^{ \circ }$である。
$a$と$b$の関係を式で表せ
出典:鳴門教育大学 過去問
青山学院大 4次関数の接線 積分公式

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+2x^3-3x^2-2x-4$と$y=ax+b$が異なる2点で接している
(1)
$a,b$の値を求めよ
(2)
$f(x)$と$y=ax+b$で囲まれる面積を求めよ
出典:1994年青山学院大学 過去問
この動画を見る
$f(x)=x^4+2x^3-3x^2-2x-4$と$y=ax+b$が異なる2点で接している
(1)
$a,b$の値を求めよ
(2)
$f(x)$と$y=ax+b$で囲まれる面積を求めよ
出典:1994年青山学院大学 過去問
東大 積分 ヨビノリたくみ

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq t \leqq 2,x^4-2x^2-1+t=0$の実数解のうち
最大のもの:$g_1(t)$
最小のもの:$g_2(t)$
$\displaystyle \int_{0}^{2} (g_1(t)-g_2(t)) dx$
出典:1993年東京大学 過去問
この動画を見る
$0 \leqq t \leqq 2,x^4-2x^2-1+t=0$の実数解のうち
最大のもの:$g_1(t)$
最小のもの:$g_2(t)$
$\displaystyle \int_{0}^{2} (g_1(t)-g_2(t)) dx$
出典:1993年東京大学 過去問
青山学院大 関数の最大値・最小値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x,y)$が次の式を満たすとき
$x^2+y^2-4x-4y+3=0$
$x+2y$の最大値と最小値を求めよ
出典:2003年青山学院大学 過去問
この動画を見る
$(x,y)$が次の式を満たすとき
$x^2+y^2-4x-4y+3=0$
$x+2y$の最大値と最小値を求めよ
出典:2003年青山学院大学 過去問
名古屋市立大 積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^2$と$y=k$が動画内の図のように交わり$S_1+S_3=S_2$となる。
$k$の値を求めよ。
出典:2001年名古屋市立大学 過去問
この動画を見る
$f(x)=x^4-2x^2$と$y=k$が動画内の図のように交わり$S_1+S_3=S_2$となる。
$k$の値を求めよ。
出典:2001年名古屋市立大学 過去問
九州大 三次関数 積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ
出典:2018年九州大学 過去問
この動画を見る
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ
出典:2018年九州大学 過去問
一橋大 三次関数と接線

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+3x^2$
$g(x)=x^3+3x^2+c(c \geqq 0)$
$f(x)$上の点$P(p,f(p))$における接線$l$が$g(x)$と点$Q(q,g(q))$で接し、点$R$で$f(x)$と交わる。
(1)
$c$を$p$で表せ
(2)
$PQ:QR$
出典:2000年一橋大学 過去問
この動画を見る
$f(x)=x^3+3x^2$
$g(x)=x^3+3x^2+c(c \geqq 0)$
$f(x)$上の点$P(p,f(p))$における接線$l$が$g(x)$と点$Q(q,g(q))$で接し、点$R$で$f(x)$と交わる。
(1)
$c$を$p$で表せ
(2)
$PQ:QR$
出典:2000年一橋大学 過去問
三重大 2変数関数の最大値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数$x,y$が$x^2+2xy+2y^2=1$を満たすとき、$2x^2+2xy+y^2$の最大値を求めよ
出典:三重大学 過去問
この動画を見る
実数$x,y$が$x^2+2xy+2y^2=1$を満たすとき、$2x^2+2xy+y^2$の最大値を求めよ
出典:三重大学 過去問
東京電機大 積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京電機大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=3x^2-2\displaystyle \int_{-1}^{0} xf(t) dt+\displaystyle \int_{1}^{2} f(t) dt$
$f(x)$を求めよ
出典:2018年東京電機大学 過去問
この動画を見る
$f(x)=3x^2-2\displaystyle \int_{-1}^{0} xf(t) dt+\displaystyle \int_{1}^{2} f(t) dt$
$f(x)$を求めよ
出典:2018年東京電機大学 過去問
熊本大 対数関数の最大値

単元:
#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$
$f(x)=log_2x+log_2(6-x)^2$
出典:熊本大学 過去問
この動画を見る
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$
$f(x)=log_2x+log_2(6-x)^2$
出典:熊本大学 過去問
東京電機大 4次関数と直線の共有点

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#東京電機大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^3+x$と$(1,0)$を通り傾き$k$の直線との共有点の個数を求めよ
出典:2017年東京電機大学 過去問
この動画を見る
$f(x)=x^4-2x^3+x$と$(1,0)$を通り傾き$k$の直線との共有点の個数を求めよ
出典:2017年東京電機大学 過去問
大阪市立(医)微分 接線と交点

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^3+4x^2+1$
点$P(t,f(t))$における接点が$f(x)$と点$P$以外の異なる2点で交わる$t$の範囲は?
出典:大阪市立大学 医学部医学科 過去問
この動画を見る
$f(x)=x^4-4x^3+4x^2+1$
点$P(t,f(t))$における接点が$f(x)$と点$P$以外の異なる2点で交わる$t$の範囲は?
出典:大阪市立大学 医学部医学科 過去問
北里大 三次関数 最大値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#北里大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \gt 0,a \neq 1$
$f(x)=2x^3-3(a+1)x^2+6ax+1$
$0 \leqq x \leqq 2$において$f(x)$が$x=2$で最大値を取る
$a$の条件を求めよ
出典:北里大学 過去問
この動画を見る
$a \gt 0,a \neq 1$
$f(x)=2x^3-3(a+1)x^2+6ax+1$
$0 \leqq x \leqq 2$において$f(x)$が$x=2$で最大値を取る
$a$の条件を求めよ
出典:北里大学 過去問
三次関数の基本性質 変曲点について点対称 畳8畳

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#徳島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ
出典:徳島文理大学 過去問
この動画を見る
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ
出典:徳島文理大学 過去問
名古屋市立大 4次関数と接線 積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^2+x$
(1)
$f(x)$と2点で接する直線の方程式は?
(2)
$f(x)$と$(1)$の直線で囲まれた面積は?
出典:名古屋市立大学 過去問
この動画を見る
$f(x)=x^4-2x^2+x$
(1)
$f(x)$と2点で接する直線の方程式は?
(2)
$f(x)$と$(1)$の直線で囲まれた面積は?
出典:名古屋市立大学 過去問
名古屋市立(医) 関数 微分

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$C_{a}:y=x(x-a)(x-2a)^2$
(1)
$(1,-1)$を通る$C_{a}$がただ1つであることを示せ
(2)
$(p,q)$を通る$C_{a}$がただ1つであるような$(p,q)$の範囲を図示せよ。
ただし$p \gt 0$
出典:1995年名古屋市立大学 医学部 過去問
この動画を見る
$a \gt 0$
$C_{a}:y=x(x-a)(x-2a)^2$
(1)
$(1,-1)$を通る$C_{a}$がただ1つであることを示せ
(2)
$(p,q)$を通る$C_{a}$がただ1つであるような$(p,q)$の範囲を図示せよ。
ただし$p \gt 0$
出典:1995年名古屋市立大学 医学部 過去問
東大 積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^2$と$y=-(x-a)^2+b$とによって囲まれる面積が$\displaystyle \frac{1}{3}$となるための必要十分条件を$a,b$を用いて表せ
出典:1975年東京大学 過去問
この動画を見る
$y=x^2$と$y=-(x-a)^2+b$とによって囲まれる面積が$\displaystyle \frac{1}{3}$となるための必要十分条件を$a,b$を用いて表せ
出典:1975年東京大学 過去問
弘前大 整式の剰余 微分

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+3x^2+2x+7$を割り切り、かつすべての項の係数が正の実数であるような2次式は存在するか
出典:2017年弘前大学 過去問
この動画を見る
$x^3+3x^2+2x+7$を割り切り、かつすべての項の係数が正の実数であるような2次式は存在するか
出典:2017年弘前大学 過去問
大阪大 3次関数

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
この動画を見る
$f(x)=x^3-3ax+a$
$0 \leqq x \leqq 1$において$f(x) \geqq 0$となるような$a$の範囲
出典:2006年大阪大学 過去問
名古屋大 微分積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=a-(a^3-1)x^2-a^2x^4$ $(a \gt 0)$
(1)
$f(x)$のグラフの概形は?
(2)
$f(x)$と$x$軸とで囲まれる面積を$S(a),\displaystyle \lim_{ a \to \infty }S(a)$
出典:1974年名古屋大学 過去問
この動画を見る
$f(x)=a-(a^3-1)x^2-a^2x^4$ $(a \gt 0)$
(1)
$f(x)$のグラフの概形は?
(2)
$f(x)$と$x$軸とで囲まれる面積を$S(a),\displaystyle \lim_{ a \to \infty }S(a)$
出典:1974年名古屋大学 過去問
