微分とその応用
福田のわかった数学〜高校3年生理系067〜微分(12)微分の計算
単元:
#微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(12) 微分計算\\
\\
y=\sqrt[3]{\frac{2x+1}{x(x-2)^2}}\\
\\
を微分せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(12) 微分計算\\
\\
y=\sqrt[3]{\frac{2x+1}{x(x-2)^2}}\\
\\
を微分せよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系066〜微分(11)定義に従った微分(3)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(11) 定義に従って(3)\\
f'(a)が存在するとき、\\
\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}\\
をa,f(a),f'(a)で表せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(11) 定義に従って(3)\\
f'(a)が存在するとき、\\
\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}\\
をa,f(a),f'(a)で表せ。
\end{eqnarray}
【数Ⅲ】微分法:対数微分、この計算式をどうしますか?
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(x)=(1+a^x)^{\frac{1}{x}}$は,$0<a<1$の時単調である
[上級問題精講数学Ⅲ、416(1)]
この動画を見る
$f(x)=(1+a^x)^{\frac{1}{x}}$は,$0<a<1$の時単調である
[上級問題精講数学Ⅲ、416(1)]
福田のわかった数学〜高校3年生理系065〜微分(10)定義に従った微分(2)log xの微分
福田の数学〜中央大学2021年理工学部第4問〜定積分と不等式、極限
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$自然数$n$に対し,$f_n(x)=x^{-1+\frac{1}{n}}(x\gt 0)$とおく.
また,正の実数$a_n$は$\displaystyle \int_{1}^{a_n}f_n(x)dx=1$満たすものとする.次の問い
答えよ.
(1)関数$f_n(x)$の不定積分を求めよ.
(2)$a_n$の値と極限$\displaystyle \lim_{n\to\infty}a_n$を求めよ.また,正の実数$b_n$が$\displaystyle \int_{1}^{b_n}f_{n+1}(x)dx=-1$を満たすとき,$b_n$の値と極限$\displaystyle \lim_{n\to\infty}b_n$を求めよ.
(3)2以上の自然数$k$に対して$\displaystyle \int_{k-1}^{k}f_n(x)dx \gt \dfrac{1}{k}$を示し,これを利用して$a_n\lt 4$を証明せよ.
(4)$\displaystyle \int_{1}^{a_n}f_{n+1}(x)dx\lt 1$を示し,これを利用して$a_n\lt a_{n+1}$を証明せよ.
2021中央大理工学部過去問
この動画を見る
$\boxed{4}$自然数$n$に対し,$f_n(x)=x^{-1+\frac{1}{n}}(x\gt 0)$とおく.
また,正の実数$a_n$は$\displaystyle \int_{1}^{a_n}f_n(x)dx=1$満たすものとする.次の問い
答えよ.
(1)関数$f_n(x)$の不定積分を求めよ.
(2)$a_n$の値と極限$\displaystyle \lim_{n\to\infty}a_n$を求めよ.また,正の実数$b_n$が$\displaystyle \int_{1}^{b_n}f_{n+1}(x)dx=-1$を満たすとき,$b_n$の値と極限$\displaystyle \lim_{n\to\infty}b_n$を求めよ.
(3)2以上の自然数$k$に対して$\displaystyle \int_{k-1}^{k}f_n(x)dx \gt \dfrac{1}{k}$を示し,これを利用して$a_n\lt 4$を証明せよ.
(4)$\displaystyle \int_{1}^{a_n}f_{n+1}(x)dx\lt 1$を示し,これを利用して$a_n\lt a_{n+1}$を証明せよ.
2021中央大理工学部過去問
福田のわかった数学〜高校3年生理系064〜微分(9)定義に従った微分(1)
福田のわかった数学〜高校3年生理系063〜微分(8)多重因子(2)
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(8) 多重因子(2)\\
f(x)=ax^4+bx^3+cx^2+dx+e を\\
(x-1)^3で割った余りをf(1),f'(1),f''(1)を\\
用いて表せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(8) 多重因子(2)\\
f(x)=ax^4+bx^3+cx^2+dx+e を\\
(x-1)^3で割った余りをf(1),f'(1),f''(1)を\\
用いて表せ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系062〜微分(7)多重因子(1)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(7) 多重因子(1)\\
整式f(x)が(x-\alpha)^3で割り切れる\iff f(a)=f'(a)=f''(a)=0\\
であることを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(7) 多重因子(1)\\
整式f(x)が(x-\alpha)^3で割り切れる\iff f(a)=f'(a)=f''(a)=0\\
であることを示せ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系061〜微分(6)高次導関数
単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(6) 高次導関数\\
\\
f(x)=\sin xの第n次導関数は\\
f^{(n)}(x)=\sin(x+\frac{n\pi}{2})であることを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(6) 高次導関数\\
\\
f(x)=\sin xの第n次導関数は\\
f^{(n)}(x)=\sin(x+\frac{n\pi}{2})であることを示せ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系060〜微分(5)陰関数の微分(2)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(5) 陰関数の微分(2)\\
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 上の点(p,q)での接線の方程式\\
は \frac{px}{a^2}+\frac{qy}{b^2}=1 であることを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(5) 陰関数の微分(2)\\
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 上の点(p,q)での接線の方程式\\
は \frac{px}{a^2}+\frac{qy}{b^2}=1 であることを示せ。
\end{eqnarray}
【数学Ⅲ/微分】三角関数の微分②(積の微分、2倍角の公式など)
単元:
#三角関数#微分法#数学(高校生)#数Ⅲ
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$
(2)
$y=x\sin3x$
(3)
$y=\sin x\cos x$
この動画を見る
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$
(2)
$y=x\sin3x$
(3)
$y=\sin x\cos x$
【数学Ⅲ/微分】三角関数の微分①(合成関数の微分)
単元:
#微分法#数Ⅲ
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\sin x-\tan x$
(2)
$y=\cos(3x+1)$
(3)
$y=\cos x^2$
(4)
$y=\sin^3x$
この動画を見る
次の関数を微分せよ。
(1)
$y=\sin x-\tan x$
(2)
$y=\cos(3x+1)$
(3)
$y=\cos x^2$
(4)
$y=\sin^3x$
福田のわかった数学〜高校3年生理系059〜微分(4)陰関数の微分
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(4) 陰関数の微分\\
\frac{x^2}{4}-\frac{y^2}{9}=1について\frac{dy}{dx},\frac{d^2y}{dx^2}を\\
xとyを用いて表せ。ただし、y≠0とする。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(4) 陰関数の微分\\
\frac{x^2}{4}-\frac{y^2}{9}=1について\frac{dy}{dx},\frac{d^2y}{dx^2}を\\
xとyを用いて表せ。ただし、y≠0とする。
\end{eqnarray}
福田のわかった数学〜高校3年生理系058〜微分(3)媒介変数表示の微分
単元:
#平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数列\textrm{III} 微分(3) 媒介変数表示\\
x=a(\theta-\sin\theta), y=a(1-\cos\theta)のとき、\frac{dy}{dx},\frac{d^2y}{dx^2}を\thetaで表せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数列\textrm{III} 微分(3) 媒介変数表示\\
x=a(\theta-\sin\theta), y=a(1-\cos\theta)のとき、\frac{dy}{dx},\frac{d^2y}{dx^2}を\thetaで表せ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系057〜微分(2)逆関数の微分
単元:
#微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(2) 逆関数の微分\\
\\
y=\tan x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
\\
の逆関数の第2次導関数を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(2) 逆関数の微分\\
\\
y=\tan x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
\\
の逆関数の第2次導関数を求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系056〜微分(1)逆関数の微分
単元:
#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(1) 逆関数の微分\\
y=\sin x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
の逆関数の導関数を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 微分(1) 逆関数の微分\\
y=\sin x (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
の逆関数の導関数を求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系054〜連続と微分可能(5)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(5)\\
f(x)=\left\{
\begin{array}{1}
x^3+px (x \geqq 2)\\
qx^2-px (x \lt 2)
\end{array}\right.
がx=2に\\
おいて微分可能となるp,qを求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(5)\\
f(x)=\left\{
\begin{array}{1}
x^3+px (x \geqq 2)\\
qx^2-px (x \lt 2)
\end{array}\right.
がx=2に\\
おいて微分可能となるp,qを求めよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系053〜極限(53)連続と微分可能(4)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(4)\\
f(x)=\left\{\begin{array}{1}
x^2\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)\\
\end{array}\right. のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(4)\\
f(x)=\left\{\begin{array}{1}
x^2\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)\\
\end{array}\right. のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系052〜極限(52)連続と微分可能(3)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(3)\\
f(x)=\left\{\begin{array}{1}
x\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)\\
\end{array}\right. のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(3)\\
f(x)=\left\{\begin{array}{1}
x\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)\\
\end{array}\right. のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系051〜極限(51)連続と微分可能(2)
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(2)\\
f(x)=\left\{\begin{array}{1}
\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)
\end{array}\right.
のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(2)\\
f(x)=\left\{\begin{array}{1}
\sin\displaystyle\frac{1}{x} (x≠0)\\
0 (x=0)
\end{array}\right.
のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
福田のわかった数学〜高校3年生理系050〜極限(50)連続と微分可能(1)
単元:
#関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(1)\\
f(x)がx=aで微分可能 \Rightarrow f(x)はx=aで連続\\
を示せ。また、逆が成り立たないことを示せ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(1)\\
f(x)がx=aで微分可能 \Rightarrow f(x)はx=aで連続\\
を示せ。また、逆が成り立たないことを示せ。
\end{eqnarray}
数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名城大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
この動画を見る
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
数学「大学入試良問集」【18−8 微分係数の定義】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\sin\ x$について$x=a$における微分係数は$\cos\ a$であるが、これを定義に従って求めてみよう。
そのために次の順序で各問いに答えよ。
(1)
$0 \lt x \lt \displaystyle \frac{\pi}{2}$のとき$0 \lt \sin\ x \lt x \lt \tan\ x$が成り立つことを図を用いて説明せよ。
(図は座標平面上の原点を中心とする半径1の円の第1象限の部分を用いよ。)
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x}{x}=1,\ \displaystyle \lim_{ x \to 0 }\displaystyle \frac{1-\cos\ x}{x}=0$を示せ。
(3)
関数$f(x)$の$x=a$における微分係数$f'(a)$の定義を述べ、その定義に従って$f(x)=\sin\ x$の場合に$f'(a)$を求めよ。
この動画を見る
$\sin\ x$について$x=a$における微分係数は$\cos\ a$であるが、これを定義に従って求めてみよう。
そのために次の順序で各問いに答えよ。
(1)
$0 \lt x \lt \displaystyle \frac{\pi}{2}$のとき$0 \lt \sin\ x \lt x \lt \tan\ x$が成り立つことを図を用いて説明せよ。
(図は座標平面上の原点を中心とする半径1の円の第1象限の部分を用いよ。)
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x}{x}=1,\ \displaystyle \lim_{ x \to 0 }\displaystyle \frac{1-\cos\ x}{x}=0$を示せ。
(3)
関数$f(x)$の$x=a$における微分係数$f'(a)$の定義を述べ、その定義に従って$f(x)=\sin\ x$の場合に$f'(a)$を求めよ。
福田のわかった数学〜高校3年生理系045〜極限(45)関数の連続性(2)
単元:
#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
数学「大学入試良問集」【18−7 球に外接する直円錐の最小体積】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
半径$a$の球に外接する直円錐について、次の各問いに答えよ。
(1)直円錐の底面の半径を$x$とするとき、その高さを$x$を用いて表せ。
(2)このような直円錐の体積の最小値を求めよ。
この動画を見る
半径$a$の球に外接する直円錐について、次の各問いに答えよ。
(1)直円錐の底面の半径を$x$とするとき、その高さを$x$を用いて表せ。
(2)このような直円錐の体積の最小値を求めよ。
数学「大学入試良問集」【18−6 平均値の定理と不等式の証明】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#姫路工業大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。
(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$
(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
この動画を見る
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。
(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$
(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
数学「大学入試良問集」【18−5 極大値をもつ条件】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{a-\cos\ x}{a+\sin\ x}$が、$0 \lt x \lt \displaystyle \frac{\pi}{2}$の範囲で極大値をもつように、定数$a$の値の範囲を求めよ。
また、その極大値が2となるときの$a$の値を求めよ。
この動画を見る
関数$f(x)=\displaystyle \frac{a-\cos\ x}{a+\sin\ x}$が、$0 \lt x \lt \displaystyle \frac{\pi}{2}$の範囲で極大値をもつように、定数$a$の値の範囲を求めよ。
また、その極大値が2となるときの$a$の値を求めよ。
数学「大学入試良問集」【18−4 微分と不等式の証明】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$のとき、次の不等式が成り立つことを証明せよ。
$\displaystyle \frac{1}{\theta}(\sin\theta+\tan\theta) \gt 2$
この動画を見る
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$のとき、次の不等式が成り立つことを証明せよ。
$\displaystyle \frac{1}{\theta}(\sin\theta+\tan\theta) \gt 2$
数学「大学入試良問集」【18−2 斜めの漸近線とグラフ】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪工業大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^3}{x^2-1}$とするとき、次の各問いに答えよ。
(1)
$f'(x)$および$f''(x)$を求めよ。
(2)
関数$y=f(x)$の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。
(3)
この曲線の漸近線の方程式を求めよ。
この動画を見る
$f(x)=\displaystyle \frac{x^3}{x^2-1}$とするとき、次の各問いに答えよ。
(1)
$f'(x)$および$f''(x)$を求めよ。
(2)
関数$y=f(x)$の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。
(3)
この曲線の漸近線の方程式を求めよ。
数学「大学入試良問集」【18−1三角関数の微分】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#日本女子大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{\sin\ x}{3+\cos\ x}$の最大値を最小値を求めよ。
この動画を見る
関数$f(x)=\displaystyle \frac{\sin\ x}{3+\cos\ x}$の最大値を最小値を求めよ。