積分とその応用 - 質問解決D.B.(データベース) - Page 26

積分とその応用

#51 大学入試問題 新潟大学(2020) 定積分【King propertyっぽいけど・・・】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x+\cos\ x}{1+\sin\ x\ \cos\ x}\ dx$を計算せよ。

出典:2020年新潟大学 入試問題
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)連続関数$f(x)$は区間$x \geqq 0$で正の値をとり、区間$x \gt 0$で微分可能
かつ$f'(x)\neq 0$であるとする。さらに、実数の定数aと関数$f(x)$が
$\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)$
を満たすとする。このとき
$a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }$
である。また、曲線$y=f(x)\ (x \gt 0)$の変曲点のx座標をpとすると
$p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。ただし、$\log x$は$x$の自然対数である。
この動画を見る 

数学「大学入試良問集」【19−24 空間図形の断面積と体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$xyz$空間の$xy$平面上に曲線$C:y=x^2,z=0$ 直線$l:y=x+a,z=0(a \leqq 1)$がある。
いま$C$と$l$の交点を$P,Q$とし、線分$PQ$を底辺とする正三角形$PQR$を$xy$平面に垂直に作る。
直線$l$を$a=1$から$C$に接するまで動かすとき、この三角形が通過してできる立体の体積$V$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−23 空間図形の断面積と体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
図のような1辺の長さ$a$の立方体
$ABCD-EFGH$がある。
線分$AF,BG,CH,DE$上にそれぞれ動点$P,Q,R,S$があり、頂点$A,B,C,D$を同時に出発して同じ速さで頂点$F,G,H,E$まで動く。
このとき、四角形$PQRS$が通過してできる立体の体積を求めよ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第4問〜極方程式と曲線で囲まれた面積

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$座標平面の原点Oを極、x軸の正の部分を始線とする極座標$(r,\ \theta)$を考える。
$k \gt 0$として、極方程式
$r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k  (0 \leqq \theta \leqq \frac{\pi}{2})$
で表される曲線を$C(k)$とする。曲線$C(k)$上の点を直交座標$(x,\ y)$で表せばxの
とりうる値の範囲は、$\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }$である。
曲線$C(k)$とx軸、y軸で囲まれた図形の面積を$S(k)$とおけば、$S(k)=\boxed{\ \ ウ\ \ }$
でなる。直交座標が$(\frac{k}{4},\ \frac{k}{4})$である曲線$C(k)$上の点Aにおける曲線$C(k)$の接線l
の方程式は、$y=\boxed{\ \ エ\ \ }$となる。曲線$C(k)$と直線l、およびx軸で囲まれた
図形の面積を$T(k)$とおけば、$S(k)=\boxed{\ \ オ\ \ }\ T(k)$が成り立つ。$0 \lt m \lt n$を
満たす実数$m,n$に対して、$S(n)-S(m)$が$T(n)$と等しくなるのは、

$\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}$のときである。

$\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }$の解答群

$⓪\sqrt k  ①k  ②k^2  ③\frac{\sqrt 2}{2}  ④\frac{\sqrt 2}{3}$
$⑤\frac{k}{2}  ⑥\frac{k}{3}  ⑦\frac{k^2}{4}  ⑧\frac{k^2}{5}  ⑨\frac{k^2}{6}$

$\boxed{\ \ エ\ \ }$の解答群

$⓪x+\frac{k}{2}  ①x+\frac{k}{4}  ②-x+\frac{k}{2}  ③-x+\frac{k}{4}  ④2x-\frac{k}{2}$
$⑤2x-\frac{k}{4}  ⑥2x-\frac{3k}{4}  ⑦-2x+\frac{k}{2}  ⑧-2x+\frac{k}{4}  ⑨-2x+\frac{3k}{4}$

2021明治大学全統過去問
この動画を見る 

数学「大学入試良問集」【19−22 積分と不等式・無限級数の良問】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
自然数$n$に対して$S(x)=\displaystyle \sum_{k=1}^n(-1)^{k-1}x^{2k-2},R(x)=\displaystyle \frac{(-1)^nx^{2n}}{1+x^2}$とする。
さらに$f(x)=\displaystyle \frac{1}{1+x^2}$とする。このとき、次の問いに答えよ。
(1)等式$\displaystyle \frac{0}{1}S(x)dx=\displaystyle \sum_{k=1}^n(-1)^{k-1}\displaystyle \frac{1}{2k-1}$が成り立つことを示せ。
(2)定積分$\displaystyle \int_{0}^{1}f(x)dx$の値を求めよ。
(3)等式$S(x)=f(x)-R(x)$が成り立つことを示せ。
(4)不等式$|\displaystyle \int_{0}^{1}R(x)dx| \leqq \displaystyle \frac{1}{2n+1}$が成り立つことを示せ。
(5)無限階級$1-\displaystyle \frac{1}{3}+\displaystyle \frac{1}{5}-\displaystyle \frac{1}{7}+・・・$の和を求めよ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(2)〜面積と回転体の体積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$(2)曲線$y=\log x$を$C$とする。$t \gt e$として、C上の点$P(t,\ \log t)$におけるCの
接線lとx軸との交点をQ、y軸との交点をRとおく。また、$(0,\ \log t)$で表される
点を$S$とおく。点Qのx座標は$\boxed{\ \ ウ\ \ }$であり、点Rのy座標は$\boxed{\ \ エ\ \ }$である。
座標平面の原点をOとすると、$a \gt 0$のとき、線分ORと線分RSの長さの比が
$a:1$となるのは、$t=\boxed{\ \ オ\ \ }$のときである。したがって、三角形OQRの面積が
三角形SPRの面積の9倍となるのは、$t=\boxed{\ \ カ\ \ }$のときである。
曲線Cとx軸、および直線$x=\boxed{\ \ カ\ \ }$で囲まれた図形をy軸のまわりに一回転
させてできる回転体の体積は$\boxed{\ \ キ\ \ }\pi$となる。

$\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ オ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-2\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }$の解答群
$⓪\ e^4  ①\ e^8  ②\ \frac{e^4-1}{2}  ③\ \frac{e^8-1}{2}  ④\ \frac{5e^4-1}{2}$
$⑤\ \frac{9e^8-1}{2}  ⑥\ \frac{3e^4+1}{2}  ⑦\ \frac{7e^8+1}{2}  ⑧4e^8-e^4+1  ⑨3e^8+1$

2021明治大学全統過去問
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(1)〜定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}} (1)\ k \gt 0$として、次の定積分を考える。
$F(k)=\int_0^1\frac{e^{kx}-1}{e^{kx}+1}\ dx$
このとき、$F(2)=\log(\boxed{\ \ ア\ \ })$となる。また、$\lim_{k \to \infty}F(k)=\boxed{\ \ イ\ \ }$である。

$\boxed{\ \ ア\ \ }$の解答群
$⓪\ \frac{e+1}{e}  ①\ \frac{e^2+1}{e}  ②\ \frac{e^4+1}{e}  ③\ \frac{e^6+1}{e}  ④\ \frac{e^8+1}{e}$
$⑤\ \frac{e+1}{2e}  ⑥\ \frac{e^2+1}{2e}  ⑦\ \frac{e^4+1}{2e}  ⑧\ \frac{e^6+1}{2e}  ⑨\ \frac{e^8+1}{2e}$

2021明治大学全統過去問
この動画を見る 

数学「大学入試良問集」【19−21 定積分関数の超良問(面積)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)$を$f(x)=\displaystyle \int_{0}^{x}\displaystyle \frac{1}{1+t^2}dt$で定める。
(1)$y=f(x)$の$x=1$における法線の方程式を求めよ。
(2)(1)で求めた法線と$x$軸および$y=f(x)$のグラフによって囲まれる図形の面積を求めよ。
この動画を見る 

数学「大学入試良問集」【19−20 媒介変数のグラフと曲線の長さ、面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$r$を正の定数とする。
$xy$平面上を時刻$t=0$から$t=\pi$まで運動する点$P(x,y)$の座標が$x=2r(t-\sin\ t\cos\ t),y=2r\ \sin^2t$であるとき、以下の問いに答えよ。
(1)
点$P$が描く曲線の概形を、$xy$平面上にかけ。

(2)
点$P$が時刻$t=0$から$t=\pi$までに動く道のり$S$は、
$S=\displaystyle \int_{0}^{\pi}\sqrt{ \left[ \dfrac{ dx }{ dt } \right]^2+\left[ \dfrac{ dy }{ dt } \right]^2 }\ dt$で与えられる。
このとき、$S$の値を求めよ。

(3)点$P$が描く曲線と$x$軸で囲まれた部分を、$x$軸の周りに1回転させてできる立体の体積を求めよ。
この動画を見る 

数学「大学入試良問集」【19−19 定積分で示された関数の最大最小】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#中京大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{x}(x\ \cos\ t-\sin\ t)dt(0 \leqq x \leqq 2\pi)$について次の問いに答えよ。
(1)$f(x)$を微分せよ。
(2)$f(x)$の最大値と最小値、およびそのときの$x$の値を求めよ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$関数$f(x)=\frac{1}{2}(x+\sqrt{2-3x^2})$の定義域は$-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$であり、
$f(x)$は$x=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$のとき、
最大値$\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$をとる。曲線$y=f(x)$、

直線$y=2x$およびy軸で囲まれた図形の面積は$\boxed{\ \ ケ\ \ }$となる。

$\boxed{\ \ ケ\ \ }$の解答群
$⓪\frac{\sqrt3}{18}\pi  ①\frac{\sqrt3}{36}\pi  ②\frac{\sqrt3}{72}\pi  ③\frac{1}{6}+\frac{\sqrt3}{36}\pi  ④\frac{1}{24}+\frac{\sqrt3}{36}\pi$
$⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi  ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi  ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi  ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi  ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi$
この動画を見る 

数学「大学入試良問集」【19−18 円をy軸回転させた回転体の体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
図形$C:y^2+(x-1)^2 \leqq 4$を$y$軸のまわりに1回転させてできる立体の体積を求めよ。
この動画を見る 

数学「大学入試良問集」【19−17 こぼれた水の体積と定積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
水を満たした半径2の半球体の容器がある。
これを静かに$\alpha^{ \circ }$傾けたとき、水面が$h$だけ下がり、こぼれ出た水の量と容器に残った水の量の比が$11:5$になった。
$h$と$\alpha$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−16 x軸・y軸回転体の体積の求め方】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#富山県立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
双曲線$x^2-\displaystyle \frac{y^2}{3}=1$と$2$直線$y=3,y=-3$で囲まれた部分を、$x$軸、$y$軸のまわりに1回転してできる立体の体積を、それぞれ$V_1,V_2$とする。
$\displaystyle \frac{V_1}{V_2}$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−15 ガウス記号と極限・区分求積法】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$x$に対して、$x$を越えない最大の整数を$\lbrack x \rbrack$で表す。
$n$を正の整数とし、$a_n=\displaystyle \sum_{k=1}^n\displaystyle \frac{\lbrack \sqrt{ 2n^2-k^2 } \rbrack}{n^2}$とおく。
このとき、$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−14 サイクロイドと接線・面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#武蔵工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
サイクロイド$x=\theta-\sin\theta,y=1-\cos\theta(0 \leqq \theta \leqq 2\pi)$
次の各問いに答えよ。

(1)$C$上の点$\lbrack \displaystyle \frac{\pi}{2}-1,1 \rbrack$における接線$l$の方程式を求めよ。
(2)接線$l$と$y$軸および$C$で囲まれた部分の面積を求めよ。
この動画を見る 

数学「大学入試良問集」【19−13媒介変数表示のグラフと面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
媒介変数$t$を用いて$x=1-\cos\ t,y=1+t\ \sin\ t+\cos\ t(0 \leqq t \leqq \pi)$と表される座標平面上の曲線を$C$とする。
このとき、次の各問いに答えよ。

(1)$y$の最大値と最小値を求めよ。
(2)曲線$C,x$軸および$y$軸で囲まれる部分の面積$S$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−12 (sinx)^nの積分と漸化式の作成】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
自然数$n$に対して、定積分$I_n$を$I_n=\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^nx\ dx$で定める。
$n \geqq 3$のとき、$I_n$を$I_{n-2}$と$n$を用いて表せ。
また、$I_2・I_4$の値を求めよ。
この動画を見る 

数学「大学入試良問集」【19−11 面積の極限とネイピア数】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#京都産業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
曲線$C:y=\displaystyle \frac{1}{x}(x \gt 0)$を考える。
また、$n=1,2,3,・・・$と正の実数$t$に対し、曲線$C_n:y=-\displaystyle \frac{n}{x}+t(x \gt 0)$を考える。
次の各問いに答えよ。

(1)
$C$と$C_n$が1点$P(a,b)$で交わり、$P$における$C$と$C_n$の接線が直行するとき、$a$と$t$を$n$を用いて表せ。

(2)
(1)のとき、曲線$C_n$と$P$における$C$の接線、および$x$軸とで囲まれる図形の面積$S_n$を求めよ。

(3)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−10 指数関数の微分と面積の最大最小】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
定数$a(1 \lt a \lt 2)$に対して、曲線$y=a^x$上の点$(t,a^t)(0 \leqq t \leqq 1)$における接線を$l$とする。
次の問いに答えよ。

(1)
接線$l$の方程式を求めよ。
また、$l$と$y$軸の交点を$(0,b(t))$とし、$b(t)$の最小値を$a$で表せ。

(2)
接線$l$と$x$軸および2直線$x=0,x=1$で囲まれた台形の面積$S(t)$を求めよ。

(3)
$S(t)$の最大値を$a$で表せ。

(4)
$S(t)$の最小値を$a$で表せ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第1問(3)〜非回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)不等式
$1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1$
が表す座標空間内の領域の体積は$\boxed{\ \ え\ \ }$である。

$\boxed{\ \ え\ \ }$の選択肢:
$(\textrm{a})\frac{3\pi}{2}  (\textrm{b})3\pi  (\textrm{c})\frac{3\pi^2}{2}  (\textrm{d})3\pi^2$
$(\textrm{e})\pi\log 2  (\textrm{f})\frac{\pi\log 2}{2}  (\textrm{g})3\pi^2\log 2$  

2021上智大学理系過去問
この動画を見る 

数学「大学入試良問集」【19−9 定積分と不等式の証明】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
$0 \leqq x \leqq \displaystyle \frac{\pi}{2}$のとき、次の不等式が成り立つことを証明せよ。
$\displaystyle \frac{2x}{\pi} \leqq \sin\ x$

(2)
次の不等式が成り立つことを証明せよ。
$\displaystyle \int_{0}^{\pi}e^{-\sin\ x}dx \leqq \pi\left[ 1-\dfrac{ 1 }{ e } \right]$
この動画を見る 

数学「大学入試良問集」【19−7 三角関数と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$t=\tan\displaystyle \frac{x}{2}$とおく。
このとき、次の各問いに答えよ。

(1)
$\displaystyle \frac{dt}{dx}$を$t$を用いて表せ。

(2)
$\cos\ x$を$t$を用いて表せ。

(3)
曲線$y=\displaystyle \frac{1}{\cos\ x}$と2直線$x=0,x=\displaystyle \frac{\pi}{3}$および$x$軸で囲まれた部分の面積$S$を求めよ。
この動画を見る 

【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 後編

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #チャート式#青チャートⅢ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=\sin2x, y=\cos2x\left(\dfrac{\pi}{8}\leqq x\leqq\dfrac{5\pi}{8}\right)$で囲まれた部分をx軸の周りに回転して出来る立体の体積を求めよ。
この動画を見る 

【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 前編

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #チャート式#青チャートⅢ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=x^2+1,x=1,x=2$,x軸で囲まれた部分をx軸の周りに回転してできる立体の体積を求めよ。
この動画を見る 

14東京都教員採用試験(数学:4番 y軸回転体 バームクーヘンの定理)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq 2\sqrt{ 2 }$
$y=x\sqrt{ 8-x^2 }$
のグラフと$x$軸で囲まれた部分を$y$軸のまわりに1回転してできる回転体の体積$V$を求めよ。

出典:東京都教員採用試験
この動画を見る 

数学「大学入試良問集」【19−6 楕円と回転体の体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt a \lt 1$とする。
点$(1,0)$から楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$に引いた接線の接点の$x$座標を$b$とする。

(1)
$b$を$a$で表せ。

(2)
楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$の$b \leqq x \leqq a$の部分と直線$x=b$で囲まれた図形を、$x$軸のまわり1回転してできる回転体の体積$V$を求めよ。

(3)
$V$の値が最大となる$a$の値と、そのときの$V$の最大値を求めよ。
この動画を見る 

練習問題48 岡山大学2011 面積、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n \in IN,\ 0 \leqq x \leqq 1$
曲線$y=x^2(1-x)^n$と$x$軸で囲まれた図形の面積を$S_n$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\ S_k$を求めよ。

出典:2011年岡山大学 練習問題
この動画を見る 

【数Ⅲ】積分法:置換積分の区間の取り方

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
置換積分の区間の取り方を解説します!
この動画を見る 
PAGE TOP