積分とその応用
【数Ⅲ-148】積分特訓③
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分特訓③)
①$\int\frac{1}{sinx}dx$
➁$\int\sqrt{x^2+1}\ dx$
この動画を見る
数Ⅲ(積分特訓③)
①$\int\frac{1}{sinx}dx$
➁$\int\sqrt{x^2+1}\ dx$
【数Ⅲ-147】積分特訓②
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分特訓➁)
①$\int\frac{1}{e^x-e^{-x}}dx$
➁$\int\frac{e^x-e^{-x}}{e^x+e^{-x}}dx$
③$\int\cos^5xdx$
この動画を見る
数Ⅲ(積分特訓➁)
①$\int\frac{1}{e^x-e^{-x}}dx$
➁$\int\frac{e^x-e^{-x}}{e^x+e^{-x}}dx$
③$\int\cos^5xdx$
【数Ⅲ-146】積分特訓①
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
④$\int \frac{2x+3}{\sqrt{x^2+3x-4}} dx$
⑤$\int x^2\log xdx$
⑥$\int\sin^2\frac{x}{2}dx$
この動画を見る
④$\int \frac{2x+3}{\sqrt{x^2+3x-4}} dx$
⑤$\int x^2\log xdx$
⑥$\int\sin^2\frac{x}{2}dx$
【数Ⅲ-145】指数関数・対数関数の積分
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(指数関数・対数関数の積分)
Q.次の不定積分を求めよ
①$\int \frac{1}{x(\log x)^2} dx$
➁$\int \frac{\log x}{x(\log x+1)^2} dx$
③$\int \frac{e^{3x}}{\sqrt{e^x+1}} dx$
この動画を見る
数Ⅲ(指数関数・対数関数の積分)
Q.次の不定積分を求めよ
①$\int \frac{1}{x(\log x)^2} dx$
➁$\int \frac{\log x}{x(\log x+1)^2} dx$
③$\int \frac{e^{3x}}{\sqrt{e^x+1}} dx$
【数Ⅲ-144】三角関数の積分②
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(三角関数の積分➁)
Q.次の不定積分を求めよ。
⑤$\int cos3xcos2xdx$
⑥$\int cos4xsin2xdx$
⑦$\int sinxsin2xdx$
⑧$\int sin3θ cosθdθ$
この動画を見る
数Ⅲ(三角関数の積分➁)
Q.次の不定積分を求めよ。
⑤$\int cos3xcos2xdx$
⑥$\int cos4xsin2xdx$
⑦$\int sinxsin2xdx$
⑧$\int sin3θ cosθdθ$
【数Ⅲ-143】三角関数の積分①
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(三角関数の積分①)
Q.次の不定積分を求めよ
⑤$\int cos^2xdx$
⑥$\int sin^3xdx$
⑦$\int cosx sin^5xdx$
この動画を見る
数Ⅲ(三角関数の積分①)
Q.次の不定積分を求めよ
⑤$\int cos^2xdx$
⑥$\int sin^3xdx$
⑦$\int cosx sin^5xdx$
【数Ⅲ-142】分数関数の積分②
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(分数関数の積分➁)
Q.次の不定積分を求めよ
①$\int \frac{2x^3+4x^2+6}{x^2+2x-3}dx$
➁$\int \frac{x}{x^2+x-6}dx$
③$\int \frac{1}{x^2(x+3)}dx$
この動画を見る
数Ⅲ(分数関数の積分➁)
Q.次の不定積分を求めよ
①$\int \frac{2x^3+4x^2+6}{x^2+2x-3}dx$
➁$\int \frac{x}{x^2+x-6}dx$
③$\int \frac{1}{x^2(x+3)}dx$
【数Ⅲ-141】分数関数の積分①
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(分数関数の積分①)
Q次の不定積分を求めよ
①$\int \frac{x-2}{x+1}dx$
➁$\int \frac{x^2-x}{x+1}dx$
③$\int \frac{-x+8}{x^2-x-6}dx$
この動画を見る
数Ⅲ(分数関数の積分①)
Q次の不定積分を求めよ
①$\int \frac{x-2}{x+1}dx$
➁$\int \frac{x^2-x}{x+1}dx$
③$\int \frac{-x+8}{x^2-x-6}dx$
【数Ⅲ-140】部分積分②
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(部分積分➁)
Q次の不定積分を求めよ
①$\int \log xdx$
➁$\int \log (x+2)dx$
③$\int (\log x)^2dx$
この動画を見る
数Ⅲ(部分積分➁)
Q次の不定積分を求めよ
①$\int \log xdx$
➁$\int \log (x+2)dx$
③$\int (\log x)^2dx$
【数Ⅲ-139】部分積分①
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(部分積分①)
Q.次の不定積分を求めよ
①$\int xcosxdx$
➁$\int (x+3)cos2xdx$
③$\int x^2 sinxdx$
この動画を見る
数Ⅲ(部分積分①)
Q.次の不定積分を求めよ
①$\int xcosxdx$
➁$\int (x+3)cos2xdx$
③$\int x^2 sinxdx$
【数Ⅲ-138】置換積分③
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(置換積分③)
Q.次の不定積分を求めよ
①$\int (2x+1)(x^2+x-3)^3dx$
➁$\int \frac{2x}{\sqrt{x^2-4}}dx$
③$\int \frac{tanx}{cosx}dx$
この動画を見る
数Ⅲ(置換積分③)
Q.次の不定積分を求めよ
①$\int (2x+1)(x^2+x-3)^3dx$
➁$\int \frac{2x}{\sqrt{x^2-4}}dx$
③$\int \frac{tanx}{cosx}dx$
【数Ⅲ-137】置換積分②
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
Q,次の不定積分を求めよ
①$\int x\sqrt{x+1}dx$
➁$\int(2x-1)(x+1)^3dx$
③$\int \frac{x}{\sqrt{2x+1}}dx$
この動画を見る
Q,次の不定積分を求めよ
①$\int x\sqrt{x+1}dx$
➁$\int(2x-1)(x+1)^3dx$
③$\int \frac{x}{\sqrt{2x+1}}dx$
名古屋市立(医)積分 初のVチューバー解説 アイシアちゃん/仮の姿は東大数学科院卒杉山聡
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$
(1)
$S_{n}$は?
(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
この動画を見る
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$
(1)
$S_{n}$は?
(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
【数Ⅲ-136】置換積分①
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(置換積分①)
Q.次の不定積分を求めよ
①$\int(4x-1)^3dx$
➁$\int sin(2θ +\frac{\pi}{3})dθ$
③$\int^3 \sqrt{2-x}dx$
④$\int \frac{1}{1-3x}dx$
⑤$\int \frac{2x}{x^2+1}dx$
⑥$\int \frac{1}{tanx}dx$
この動画を見る
数Ⅲ(置換積分①)
Q.次の不定積分を求めよ
①$\int(4x-1)^3dx$
➁$\int sin(2θ +\frac{\pi}{3})dθ$
③$\int^3 \sqrt{2-x}dx$
④$\int \frac{1}{1-3x}dx$
⑤$\int \frac{2x}{x^2+1}dx$
⑥$\int \frac{1}{tanx}dx$
【数Ⅲ-135】不定積分③(指数関数編)
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分③・指数関数編)
③$\int (4e^x+3)dx$
④$\int (5^x-2^x)dx$
⑤$\int e^{3x}dx$
この動画を見る
数Ⅲ(不定積分③・指数関数編)
③$\int (4e^x+3)dx$
④$\int (5^x-2^x)dx$
⑤$\int e^{3x}dx$
【数Ⅲ-134】不定積分②(三角関数編)
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分➁・三角関数編)
⑤$\int (4sin x-3cos x)dx$
⑥$\int \frac{cos^3x+5}{cos^2x}dx$
⑦$\int \frac{1}{tan^2x}dx$
この動画を見る
数Ⅲ(不定積分➁・三角関数編)
⑤$\int (4sin x-3cos x)dx$
⑥$\int \frac{cos^3x+5}{cos^2x}dx$
⑦$\int \frac{1}{tan^2x}dx$
【数Ⅲ-133】不定積分①(準備運動編)
単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分①・準備運動編)
Q.次の不定積分を求めよ
①$\int 5x^2dx$
➁$\int (8x^3+x^2-6x+5)dx$
③$\int (\frac{1}{x^3}-\sqrt{x})dx$
④$\int (\frac{6x^4-3}{x^2})dx$
⑤$\int \frac{(x-1)^2}{x^3}dx$
⑥$\int (\frac{x-2}{x})^2dx$
この動画を見る
数Ⅲ(不定積分①・準備運動編)
Q.次の不定積分を求めよ
①$\int 5x^2dx$
➁$\int (8x^3+x^2-6x+5)dx$
③$\int (\frac{1}{x^3}-\sqrt{x})dx$
④$\int (\frac{6x^4-3}{x^2})dx$
⑤$\int \frac{(x-1)^2}{x^3}dx$
⑥$\int (\frac{x-2}{x})^2dx$
2019 東大入試問題 タクミの東大入試問題解説が聴けるのはここだけ!Mathematics Japanese university entrance exam Tokyo University
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$
出典:2019年東京大学入試問題
この動画を見る
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$
出典:2019年東京大学入試問題
積分 CASTDICE TV 栗崎 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \int_{0}^{ x } xe^x \sin x$ $dx$
出典:東工大学入試数学 過去問
この動画を見る
$\displaystyle \int_{0}^{ x } xe^x \sin x$ $dx$
出典:東工大学入試数学 過去問
滋賀大 積分 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#平面図形#角度と面積#数学(高校生)#数Ⅲ#滋賀大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'93滋賀大学過去問題
$y=\frac{1}{2}x^2$上に2点P,Q
線分PQは長さが2となるように動く、PQの中点のx座標をm
線分PQと放物線で囲まれる面積をmで表せ
この動画を見る
'93滋賀大学過去問題
$y=\frac{1}{2}x^2$上に2点P,Q
線分PQは長さが2となるように動く、PQの中点のx座標をm
線分PQと放物線で囲まれる面積をmで表せ
早稲田 積分 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
'93早稲田大学過去問題
$f(x)=-x^3+2x+\frac{1}{3} \{ \int_0^1f(x)dx \}^2$
と$y=x+\frac{3}{4}$で囲まれた面積
この動画を見る
'93早稲田大学過去問題
$f(x)=-x^3+2x+\frac{1}{3} \{ \int_0^1f(x)dx \}^2$
と$y=x+\frac{3}{4}$で囲まれた面積
東京水産大 3次関数と2次関数の接する条件 積分 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#積分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
'82東京水産大学過去問題
$y=x^2(x+5),y=-x^2+a \quad (a \neq 0)$
が接するようなaの値を定め、又そのとき2曲線によって囲まれる面積
この動画を見る
'82東京水産大学過去問題
$y=x^2(x+5),y=-x^2+a \quad (a \neq 0)$
が接するようなaの値を定め、又そのとき2曲線によって囲まれる面積
東京農工大 積分公式 Japanese university entrance exam questions
単元:
#大学入試過去問(数学)#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京農工大学過去問題
$f(x)=x^4+ax^3+bx^2$はP(1,f(1)),Q(-2,f(-2))において直線PQと接している。
a,bを求めf(x)と直線PQとで囲まれる部分の面積を求めよ。
この動画を見る
東京農工大学過去問題
$f(x)=x^4+ax^3+bx^2$はP(1,f(1)),Q(-2,f(-2))において直線PQと接している。
a,bを求めf(x)と直線PQとで囲まれる部分の面積を求めよ。
福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その3(受験編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $xyz$空間内の平面$z=0$上に正方形$\ R=\left\{(x,y,z)|1 \leqq x \leqq 2,\ 1 \leqq y \leqq 2 \right\}$
がある。この正方形を$x$軸のまわりに回転してできる立体を$K$とする。
この立体$K$を$y$軸のまわりに1回転してできる立体$L$の体積を求めよ。
この動画を見る
${\Large\boxed{1}}$ $xyz$空間内の平面$z=0$上に正方形$\ R=\left\{(x,y,z)|1 \leqq x \leqq 2,\ 1 \leqq y \leqq 2 \right\}$
がある。この正方形を$x$軸のまわりに回転してできる立体を$K$とする。
この立体$K$を$y$軸のまわりに1回転してできる立体$L$の体積を求めよ。
福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その2(受験編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 空間内に3点$P\left(1,\displaystyle \frac{1}{2},0\right),Q\left(1,-\displaystyle \frac{1}{2},0\right),R\left(\displaystyle \frac{1}{4},0,\displaystyle \frac{\sqrt3}{4}\right)$を頂点とする
正三角形の板Sがある。Sをz軸のまわりに1回転させたとき、Sが
通過する点全体の作る立体の面積を求めよ。
この動画を見る
${\Large\boxed{1}}$ 空間内に3点$P\left(1,\displaystyle \frac{1}{2},0\right),Q\left(1,-\displaystyle \frac{1}{2},0\right),R\left(\displaystyle \frac{1}{4},0,\displaystyle \frac{\sqrt3}{4}\right)$を頂点とする
正三角形の板Sがある。Sをz軸のまわりに1回転させたとき、Sが
通過する点全体の作る立体の面積を求めよ。
福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その1(受験編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 空間内の2点A(1,0,0),B(0,1,1)を結ぶ線分ABをz軸のまわりに
1回転してできる曲面と2平面z=0,z=1とで囲まれた立体の体積
を求めよ。
この動画を見る
${\Large\boxed{1}}$ 空間内の2点A(1,0,0),B(0,1,1)を結ぶ線分ABをz軸のまわりに
1回転してできる曲面と2平面z=0,z=1とで囲まれた立体の体積
を求めよ。
福田の一夜漬け数学〜積分・面積と体積、媒介変数表示(1)〜受験編
単元:
#平面上の曲線#積分とその応用#定積分#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。
(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。