複素数平面
福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件
単元:
#数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}
2021明治大学全統過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} (2)\ 方程式\ x^2+x+1=0の2つの解を\alpha,\ \betaとする。またbを実数として、\\
方程式\ x^2+x+1=0の2つの解を\gamma,\ \deltaとする。複素数平面上で、4点A(\alpha),\\
B(\beta),C(\gamma),D(\delta)が同じ円上にあるとき、bの値は±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}となる。
\end{eqnarray}
2021明治大学全統過去問
福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面
単元:
#平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)\ 座標平面において、点(-1,\ 0)からの距離と点(1,\ 0)からの距離の和が4\\
である点は方程式\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1\ で表される曲線C上にある。点(x,\ y)\\
が曲線C上を動くとき、点(x,\ y)と点(-1,\ 0)の距離をdとおけば、dの最小値\\
は\ \boxed{\ \ ウ\ \ }、最大値は\ \boxed{\ \ エ\ \ }\ となる。複素数zが|z|+|z-4|=8を満たすとき、\\
|z|のとりうる範囲は\ \boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}
2021明治大学全統過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} (1)\ 座標平面において、点(-1,\ 0)からの距離と点(1,\ 0)からの距離の和が4\\
である点は方程式\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1\ で表される曲線C上にある。点(x,\ y)\\
が曲線C上を動くとき、点(x,\ y)と点(-1,\ 0)の距離をdとおけば、dの最小値\\
は\ \boxed{\ \ ウ\ \ }、最大値は\ \boxed{\ \ エ\ \ }\ となる。複素数zが|z|+|z-4|=8を満たすとき、\\
|z|のとりうる範囲は\ \boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}
2021明治大学全統過去問
福田の数学〜青山学院大学2021年理工学部第4問〜複素数平面上の点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 複素数平面上の点zがz+\bar{ z }=2を満たしながら動くとき、以下の問いに答えよ。\\
(1)点z全体が描く図形を複素数平面上に図示せよ。\\
\\
(2)w=(2+i)z で定まる点w全体が描く図形を調べよう。\\
(\textrm{a})wの実部をu、虚部をvとしてw=u+viと表すとき、u,vが満たす方程式\\
を求めよ。\\
(\textrm{b})点w全体が描く図形を複素数平面上に図示せよ。\\
\\
(3)w=z^2で定まる点w全体が描く図形を複素数平面上に図示せよ。
\end{eqnarray}
2021青山学院大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}} 複素数平面上の点zがz+\bar{ z }=2を満たしながら動くとき、以下の問いに答えよ。\\
(1)点z全体が描く図形を複素数平面上に図示せよ。\\
\\
(2)w=(2+i)z で定まる点w全体が描く図形を調べよう。\\
(\textrm{a})wの実部をu、虚部をvとしてw=u+viと表すとき、u,vが満たす方程式\\
を求めよ。\\
(\textrm{b})点w全体が描く図形を複素数平面上に図示せよ。\\
\\
(3)w=z^2で定まる点w全体が描く図形を複素数平面上に図示せよ。
\end{eqnarray}
2021青山学院大学理工学部過去問
福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1 (\textrm{b})2 (\textrm{c})\alpha (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1 (\textrm{f})\frac{\alpha}{2}-1 (\textrm{g})-\frac{\alpha}{2}+1 (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1 (\textrm{j})\alpha-1 (\textrm{k})-\alpha+1 (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2} (\textrm{n})\alpha-\frac{1}{2} (\textrm{o})-\alpha+\frac{1}{2} (\textrm{p})-\alpha-\frac{1}{2}
\end{eqnarray}
2021上智大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1 (\textrm{b})2 (\textrm{c})\alpha (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1 (\textrm{f})\frac{\alpha}{2}-1 (\textrm{g})-\frac{\alpha}{2}+1 (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1 (\textrm{j})\alpha-1 (\textrm{k})-\alpha+1 (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2} (\textrm{n})\alpha-\frac{1}{2} (\textrm{o})-\alpha+\frac{1}{2} (\textrm{p})-\alpha-\frac{1}{2}
\end{eqnarray}
2021上智大学理工学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(1)〜ド・モアブルの定理
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ (1+i)^{10}を展開して得られる複素数は\ \boxed{\ \ ア\ \ }\ である。ただし、iは虚数単位とする。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (1)\ (1+i)^{10}を展開して得られる複素数は\ \boxed{\ \ ア\ \ }\ である。ただし、iは虚数単位とする。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田の数学〜早稲田大学2021年人間科学部第6問〜回転で定義された点列の極限
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} 点M_1(0,0)を中心に点(1,0)を、時計の針の回転と逆の向きを正として、\thetaだけ\\
回転させた点をP_1とする。次に線分M_1P_1の中点M_2とし、このM_2を中心に点P_1\\
を\thetaだけ回転させた点をP_2とする。同様に自然数nに対して、線分M_nP_nの中点\\
M_{n+1}を中心に点P_nを\thetaだけ回転させた点をP_{n+1}とする。P_nの座標を(x_n,y_n)と\\
する。\\
\\
(1)\theta=\frac{\pi}{4}のとき、x_2=\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}, y_2=\frac{\boxed{\ \ ツ\ \ }+\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }} である。\\
\\
(2)\theta=\frac{\pi}{3}のとき、\lim_{n \to \infty}x_n=\boxed{\ \ ナ\ \ }, \lim_{n \to \infty}y_n=\frac{\sqrt{\boxed{\ \ ニ\ \ }}}{\boxed{\ \ ヌ\ \ }} である。
\end{eqnarray}
2021早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}} 点M_1(0,0)を中心に点(1,0)を、時計の針の回転と逆の向きを正として、\thetaだけ\\
回転させた点をP_1とする。次に線分M_1P_1の中点M_2とし、このM_2を中心に点P_1\\
を\thetaだけ回転させた点をP_2とする。同様に自然数nに対して、線分M_nP_nの中点\\
M_{n+1}を中心に点P_nを\thetaだけ回転させた点をP_{n+1}とする。P_nの座標を(x_n,y_n)と\\
する。\\
\\
(1)\theta=\frac{\pi}{4}のとき、x_2=\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}, y_2=\frac{\boxed{\ \ ツ\ \ }+\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }} である。\\
\\
(2)\theta=\frac{\pi}{3}のとき、\lim_{n \to \infty}x_n=\boxed{\ \ ナ\ \ }, \lim_{n \to \infty}y_n=\frac{\sqrt{\boxed{\ \ ニ\ \ }}}{\boxed{\ \ ヌ\ \ }} である。
\end{eqnarray}
2021早稲田大学人間科学部過去問
福田の数学〜早稲田大学2021年理工学部第3問〜複素数平面上の点の軌跡
単元:
#大学入試過去問(数学)#複素数平面#積分とその応用#複素数平面#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 複素数$\alpha=2+i,$ $\beta=-\displaystyle \frac{1}{2}+i$に対応する複素数平面上の点を$A(\alpha),\ B(\beta)$とする。
このとき、以下の問いに答えよ。
(1)複素数平面上の点$C(\alpha^2),\ D(\beta^2)$と原点$O$の3点は一直線上にあることを示せ。
(2)点$P(z)$が直線$AB$上を動くとき、$z^2$の実部を$x$、虚部を$y$として、点$Q(z^2)$の軌跡
を$x,y$の方程式で表せ。
(3)点$P(z)$が三角形$OAB$の周および内部にあるとき、点$Q(z^2)$全体のなす図形をK
とする。$K$を複素数平面上に図示せよ。
(4)(3)の図形$K$の面積を求めよ。
2021早稲田大学理工学部過去問
この動画を見る
${\Large\boxed{3}}$ 複素数$\alpha=2+i,$ $\beta=-\displaystyle \frac{1}{2}+i$に対応する複素数平面上の点を$A(\alpha),\ B(\beta)$とする。
このとき、以下の問いに答えよ。
(1)複素数平面上の点$C(\alpha^2),\ D(\beta^2)$と原点$O$の3点は一直線上にあることを示せ。
(2)点$P(z)$が直線$AB$上を動くとき、$z^2$の実部を$x$、虚部を$y$として、点$Q(z^2)$の軌跡
を$x,y$の方程式で表せ。
(3)点$P(z)$が三角形$OAB$の周および内部にあるとき、点$Q(z^2)$全体のなす図形をK
とする。$K$を複素数平面上に図示せよ。
(4)(3)の図形$K$の面積を求めよ。
2021早稲田大学理工学部過去問
数学Ⅲが1時間で分かる動画!極限、微分積分をメインに!複素数平面を添えて【篠原好】
単元:
#数Ⅱ#複素数平面#微分法と積分法#平均変化率・極限・導関数#複素数平面#数学(高校生)#数C
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
極限、微分積分をメインに!複素数平面を添えて
「数学Ⅲが1時間で分かる」動画です。
この動画を見る
極限、微分積分をメインに!複素数平面を添えて
「数学Ⅲが1時間で分かる」動画です。
【理数個別の過去問解説】2021年度東京大学 数学 理科第2問(1)解説
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
複素数a,b,cに対して整式$f(z)=az^2+bz+c$を考える。iを虚数単位とする。$\alpha,\beta,y$を複素数とする。
$f(0)=α,f(1)=β,f(i)=(γ)$が成り立つとき、$a,b,c$をそれぞれ$\alpha,\beta,y$で表せ。
この動画を見る
複素数a,b,cに対して整式$f(z)=az^2+bz+c$を考える。iを虚数単位とする。$\alpha,\beta,y$を複素数とする。
$f(0)=α,f(1)=β,f(i)=(γ)$が成り立つとき、$a,b,c$をそれぞれ$\alpha,\beta,y$で表せ。
福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。
(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。
2021慶應義塾大学理工学部過去問
この動画を見る
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。
(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。
2021慶應義塾大学理工学部過去問
2021久留米大(医)三次方程式と複素平面
単元:
#数Ⅱ#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.
2021久留米(医)
この動画を見る
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.
2021久留米(医)
一橋大 整式の剰余
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を
$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり
を求めよ.$n$は自然数である.
一橋大学過去問
この動画を見る
$f(z)=z^{2n}+z^n+1$を
$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり
を求めよ.$n$は自然数である.
一橋大学過去問
北里大 複素数の総和
単元:
#数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z=-1+i$
$\displaystyle \sum_{n=1}^{12} z^n$
出典:2014年北里大学 過去問
この動画を見る
$z=-1+i$
$\displaystyle \sum_{n=1}^{12} z^n$
出典:2014年北里大学 過去問
神戸大 複素数の2次方程式
単元:
#数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+i=0$を解け
出典:1971年神戸大学 過去問
この動画を見る
$x^2+i=0$を解け
出典:1971年神戸大学 過去問
福井大 2次方程式と複素平面
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
この動画を見る
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ
出典:2000年福井大学 過去問
山梨大 2次方程式と複素数平面
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
この動画を見る
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ
出典:2000年山梨大学 過去問
【数学III】複素数平面のイメージ・ニュアンスが30分で丸わかり動画
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学III】複素数平面のイメージ・ニュアンス解説動画です
この動画を見る
【数学III】複素数平面のイメージ・ニュアンス解説動画です
自治医科大学
単元:
#大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#自治医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$\displaystyle \frac{1}{1-\alpha}+\displaystyle \frac{1}{1-\alpha^2}+\displaystyle \frac{1}{1-\alpha^3}+\displaystyle \frac{1}{1-\alpha^4}+$
$\displaystyle \frac{1}{1-\alpha^5}+\displaystyle \frac{1}{1-\alpha^6}$
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{3\sin 4x}{x+\sin x}$
出典:2017年自治医科大学 過去問
この動画を見る
(1)
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$\displaystyle \frac{1}{1-\alpha}+\displaystyle \frac{1}{1-\alpha^2}+\displaystyle \frac{1}{1-\alpha^3}+\displaystyle \frac{1}{1-\alpha^4}+$
$\displaystyle \frac{1}{1-\alpha^5}+\displaystyle \frac{1}{1-\alpha^6}$
(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{3\sin 4x}{x+\sin x}$
出典:2017年自治医科大学 過去問
名古屋大 3次式の係数決定
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c$
$a,b,c$は整数
$f(\sqrt{ 2 })=0$
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$f(w)$は実数
$a,b,c$の値を求めよ
出典:2006年名古屋大学 過去問
この動画を見る
$f(x)=x^3+ax^2+bx+c$
$a,b,c$は整数
$f(\sqrt{ 2 })=0$
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$f(w)$は実数
$a,b,c$の値を求めよ
出典:2006年名古屋大学 過去問
横浜市立大(医)
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$iz^2+2iz+\displaystyle \frac{1}{2}+i=0$を解け
出典:2000年横浜市立大学 過去問
この動画を見る
$iz^2+2iz+\displaystyle \frac{1}{2}+i=0$を解け
出典:2000年横浜市立大学 過去問
京都大 複素数
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{2Z+2i}{Z+2i}=\bar{ Z }$を満たす複素数$Z$をすべて求めよ
出典:2005年京都大学 過去問
この動画を見る
$\displaystyle \frac{2Z+2i}{Z+2i}=\bar{ Z }$を満たす複素数$Z$をすべて求めよ
出典:2005年京都大学 過去問
九州大 3次方程式:2次方程式 有理数解
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=\cos20^{ \circ }+i \sin 20^{ \circ }$
$\alpha = Z+\bar{ Z }$←共役な複素数
(1)
$\alpha$が解となる整数係数3次方程式は?
(2)
(1)の3次方程式は、3つの実数解をもち、そのすべては有理数でないことを示せ
(3)
有理数係数の2次方程式で$\alpha$を解に持つものはないことを示せ
出典:2000年九州大学 過去問
この動画を見る
$Z=\cos20^{ \circ }+i \sin 20^{ \circ }$
$\alpha = Z+\bar{ Z }$←共役な複素数
(1)
$\alpha$が解となる整数係数3次方程式は?
(2)
(1)の3次方程式は、3つの実数解をもち、そのすべては有理数でないことを示せ
(3)
有理数係数の2次方程式で$\alpha$を解に持つものはないことを示せ
出典:2000年九州大学 過去問
千葉大 整式
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数
$a \neq b,c \neq d$
自然数$p,q$が存在することを示せ
出典:2004年千葉大学 過去問
この動画を見る
$a,b,c,d$は自然数
$a \neq b,c \neq d$
自然数$p,q$が存在することを示せ
出典:2004年千葉大学 過去問
早稲田大学 数列、複素数
単元:
#大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$
(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ
(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値
(3)
$a_{n}$は5の倍数でないことを示せ
(4)
$Z^n$は実数でないことを示せ
出典:2013年早稲田大学 過去問
この動画を見る
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$
(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ
(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値
(3)
$a_{n}$は5の倍数でないことを示せ
(4)
$Z^n$は実数でないことを示せ
出典:2013年早稲田大学 過去問
東京医科歯科大 複素数の入った2次方程式
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+dx+1+2i=0$が実数解をもつような複素数$\alpha$の絶対値の最小値を求めよ
出典:東京医科歯科大学 過去問
この動画を見る
$x^2+dx+1+2i=0$が実数解をもつような複素数$\alpha$の絶対値の最小値を求めよ
出典:東京医科歯科大学 過去問
三重大 複素数 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$の2つの解を$\alpha, \beta$とする。
(1)
$\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\beta}$の値
(2)
$\alpha^{27},\beta^{27}$の値
(3)
$\alpha^n+\beta^n$の値
出典:三重大学 過去問
この動画を見る
$x^2-x+1=0$の2つの解を$\alpha, \beta$とする。
(1)
$\displaystyle \frac{1}{\alpha}+\displaystyle \frac{1}{\beta}$の値
(2)
$\alpha^{27},\beta^{27}$の値
(3)
$\alpha^n+\beta^n$の値
出典:三重大学 過去問
弘前大 3倍角 5倍角 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#加法定理とその応用#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\sin 3x$を$\sin x$で表せ
(2)
$\sin x + \cos x=4\sin x \cos ^2x$を満たす$x$を求めよ
出典:1986年弘前大学 過去問
この動画を見る
(1)
$\sin 3x$を$\sin x$で表せ
(2)
$\sin x + \cos x=4\sin x \cos ^2x$を満たす$x$を求めよ
出典:1986年弘前大学 過去問
これから数Ⅲを学ぶ人に贈る。複素数って何だよ?iって何?
甲南大 複素数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#甲南大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{\sqrt{ 3 }+i}{\sqrt{ 3 }-i}$
$Z+Z^2+Z^3+…+Z^{100}$
出典:2002年甲南大学 過去問
この動画を見る
$Z=\displaystyle \frac{\sqrt{ 3 }+i}{\sqrt{ 3 }-i}$
$Z+Z^2+Z^3+…+Z^{100}$
出典:2002年甲南大学 過去問
学習院大 複素数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#学習院大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{Z-1-3i}{Z-2}$が純虚数であるような複素数$Z$について
$\vert Z \vert$の最大・最小を求めよ。
出典:2003年学習院大学 過去問
この動画を見る
$\displaystyle \frac{Z-1-3i}{Z-2}$が純虚数であるような複素数$Z$について
$\vert Z \vert$の最大・最小を求めよ。
出典:2003年学習院大学 過去問