数学(高校生) - 質問解決D.B.(データベース) - Page 23

数学(高校生)

【数A】【場合の数と確率】さいころ2個の目の積の期待値 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2個のさいころを同時に投げるとき、2個の目の積の期待値を求めよ。
この動画を見る 

【数A】【場合の数と確率】条件付き確率、帽子を忘れてくる確率 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
5回に1回の割合で帽子を忘れるくせのあるK君が、正月A、B、C3軒を順に年始回りをして家に帰ったところ、帽子を忘れてきたことに気がついた。2番目の家Bに忘れてきた確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】条件付き確率、原因の確率 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある電器店が、A社、B社、C社から同じ製品を仕入れた。A社、B社、C社から仕入れた比率は4:3:2であり、製品が不良品である比率はそれぞれ3%、4%、5%であるという。いま、大量にある3社の製品をよく混ぜ、その中から1個抜き取って調べたところ、不良品であった。これがA社から仕入れたものである確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】条件付き確率2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Aの袋には白玉3個と赤玉2個、Bの袋には白玉2個と赤玉3個、Cの袋には白玉1個と赤玉4個が入っている。1個のさいころを投げて1の目が出たらAの袋を、2,3の目が出たらBの袋を、4~6の目が出たらCの袋を選び、1個の玉を取り出すものとする。取り出された玉が白玉であったとき、それがCの袋から取り出された玉である確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】条件付き確率1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ジョーカーを除く1組52枚のトランプから2枚のカードを同時に抜き出す。2枚のうちの少なくとも1枚はハートであることがわかっているとき、残りの1枚もハートである確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】確率の乗法定理 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
箱Aには赤玉3個と白玉2個、箱Bには赤玉と白玉2個ずつ入っている。
(1)箱Aから玉を1個取り出し、それを箱Bに入れた後、箱Bから玉を1個取り出すとき、それが赤玉である確率を求めよ。
(2)箱Aから玉を2個取り出し、それを箱Bに入れた後、箱Bから玉を2個同時に取り出すとき、それらが2個とも赤玉である確率を求めよ。
この動画を見る 

【数A】【場合の数と確率】確率の条件から未知数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1つのつぼに赤玉と白玉が合計10個入っている。このつぼから1個の玉を取り出し、それをつぼに戻さずにまた1個の玉を取り出す。このとき、取り出される2個の玉がともに赤玉である確率は7/15であるという。このつぼに初め赤玉は何個入っているか。
この動画を見る 

福田のおもしろ数学428〜√n+1-√n-1が有理数になるような整数nが存在するかどうかを考える

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\sqrt{n+1}-\sqrt{n-1}$が有理数となる

整数$n$は存在するか?
   
この動画を見る 

福田の数学〜東京大学2025文系第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

白玉$2$個が横に並んでいる。

投げたとき表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインを用いて、

次の手順 (*) をくり返し、

白玉または黒玉を横一列に並べていく。

手順(*)

$\quad$コインを投げ、

$\quad$表が出たら白玉、裏が出たら黒玉を、

$\quad$それまでに並べられている一番右にある玉の

$\quad$右隣におく。

$\quad$そして、新しくおいた玉の色が

$\quad$その$1$つ左の玉の色と異なり、

$\quad$かつ$2$つ左の玉の色と一致するときには、

$\quad$新しくおいた玉の$1$つ左の玉を新しくおいた玉と

$\quad$同じ色の玉にとりかえる。

例えば、手順(*)を$2$回行いコインが裏、表の順に

出た場合には、白玉が$4$つ並ぶ。

正の整数$n$に対して、手順(*)を$n$回行った時点での

$(n + 2)$個の玉の並び方を考える。

(1)$n = 3$のとき、

右から$2$番目の玉が白玉である確率を求めよ。

(2)$n$を正の整数とする。

右から$2$番目の玉が白玉である確率を求めよ。

(3)$n$を正の整数とする。

右から$1$番目と$2$番目の玉がともに白玉である確率を求めよ。

$2025$年東京大学文系過去問題
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1.4次関数$y=f(x)$のグラフの2つの変曲点の座標は
$(-1,1),(1,8)$であり、点$(1,8)$における接線は
直線$y=x$に平行である。関数$f(x)$を求めよ。
2.$a$は定数とする。
曲線$y=(x^2+2x+a)e^x$の変曲点の個数を調べよ
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1.関数$y=-x^3+3x^2$のグラフはただ1つの変曲点をもち、
その点に関して対象であることを示せ。
2.関数$y=x^3+3ax^2+3bx+c$は$x=1$で極小となり、
点$(0,3)$はそのグラフの変曲点である。定数$a,b,c$の値を求めよ。
3.右の図は、関数$y=ax^3+bx^2+cx+d~~(0< x <5)$のグラフで、
$x=2$で極大、$x=4$で極小となり、点$(3,5)$は変曲点である。
定数$a,b,c,d$を求めずに、次のものを求めよ。
(1) $y' > 0$となる$x$の値の範囲
(2) $y'' > 0$となる$x$の値の範囲
(3) $y'$が最小となる$x$の値
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ3 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数$f(x)$について、$f'(0)=f''(0)=0$であることを示せ。
また、$f(x)$は$x=0$で極値をとるかどうかを調べよ。
(1) $f(x)=x^4$
(2) $f(x)=x^2\sin x$
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフの概形をかけ。
(1) $y=\dfrac{x^3}{x^2-4}$
(2) $y=x+\sqrt{1-x^2}$
(3) $y=x\sqrt{1-x^2}$
(4) $y=e^{\frac1x}$
(5) $y=e^{-x}\cos x\quad (0\leqq x \leqq 2\pi)$
この動画を見る 

【数Ⅲ】【微分とその応用】関数のグラフ1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線の漸近線の方程式を求めよ。
(1) $y=\dfrac{x}{\sqrt{x^2+1}}$
(2) $y=2x+\sqrt{x^2-1}$
この動画を見る 

【高校数学】京都大学の定積分の問題は半角の公式で攻略できた!

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
■【京都大学 2025】
次の定積分の値を求めよ。
$\displaystyle \int_0^{\frac{π}{2}}\sqrt{\frac{1-cosx}{1+cosx}}dx$
この動画を見る 

福田のおもしろ数学427〜累乗の繰り返しの数と2025の大小比較

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$a=\sqrt[2025]{2025}$とする。

$a^{a^{a^{\cdots a}}} \}2025$個と$2025$の大小を比較して下さい。
   
この動画を見る 

【数A】【図形の性質】空間図形の応用3 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
立方体の各面の対角線の交点を頂点とし、
隣り合った面どうしの頂点を結ぶことによって、
立方体の中に正八面体ができる。
このとき、次の場合について、
正八面体の体積を求めよ。
(1) 立方体の1辺の長さが 10
(2) 正八面体の1辺の長さが6

一辺の長さが5の正八角形について、
次のものを求めよ。
(1) 正八角形の体積V
(2) 正八角形に内接する球の半径r
この動画を見る 

【数A】【図形の性質】空間図形の応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCD において,辺AB と辺CDが垂直ならば,頂点Aから平面BCDに下ろした垂線AHと,頂点Bから平面CDAに下ろした垂線BKは交わることを示せ。ただし,HとB,KとAはそれぞれ一致しないものとする。

直方体 ABCD-EFGHにおいて,
辺AB,AD,AEの長さをそれぞれa,b,cとする。
また,頂点Aから直線FHに下ろした垂線をAK とする。
このとき,次の問いに答えよ。
(1) EK⊥FHであることを証明せよ。
(2) 垂線AKの長さを求めよ。
この動画を見る 

【数A】【図形の性質】空間図形の応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間内の異なる2つの直線ℓ 、m と異なる2つの平面α,βについて,
次の記述は常に正しいか。
(1) ℓ⊥α、m⊥αならば、ℓ⊥mである。
(2) ℓ⊥α、m⊥αならば、α//βである。
(3) ℓ//α、m//αならば、ℓ//mである。
(4) ℓ//α、m⊥αならば、ℓと並行でmと垂直な直線がある。

正六角柱を底面に
平行でない1つの平面で切ったものである。
六角形ABCDEF について,
辺AB と平行な辺を答えよ。

立方体について、次の問いに答えよ。
(1) 辺BF と垂直な面をすべて答えよ。
(2) 平面 BFHD と平行な辺をすべて答えよ。
(3) この立方体に,平行な位置関係にある面は何組あるか。
(4) 平面ABGHと垂直な面をすべて答えよ。
この動画を見る 

【数A】【図形の性質】作図の応用 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
線分ABが与えられたとき, 線分ABを斜辺とし, ∠BAC=60° である直角三角形ABC を作図せよ。

右の図のような円があり,その周上に点Aがある。
Aを頂点の1つとし、他の5つの頂点がいずれもこの円周上にあるような正六角形を作図せよ。

右の図のように,直線と円Oおよびその中心が与えられている。
直線lに平行な円Oの接線を作図せよ。
この動画を見る 

【数A】【図形の性質】円の位置関係 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように,数直線上の原点を中心とする半径3の円Oと、
この数直線上を動く点Pを中心とする半径2の円Pがある。
Pの座標をtとするとき,次の件を満たすとの値,またはtの値の範囲を求めよ。
(1) 2円O,Pの共通接線が4本引ける。
(2) 2円O,Pの共有点が1個である。
(3) 2円O,Pの共通接線が、座標が6である数直線上の点Aを通る。

図のように,半径3の外接する2円A, B
が、半径8の円Oに内接している。2円A, B
に外接し,円Oに内接する円Cの半径を求めよ。
この動画を見る 

福田の数学〜東京大学2025文系第2問〜三角形の3頂点を中心とする3つの円で3辺を含む条件と三角形を含む条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$

平面上で$AB=AC=1$である

二等辺三角形$ABC$を考える。

正の実数$r$に対し、$A,B,C$それぞれを中心とする

半径$r$の円$3$つを合わせた領域を$D_r$とする。

ただし、この問いでは、

三角形と円は周とその内部からなるものとする。

辺$AB,AC,BC$がすべて$D_r$に

含まれるような最小の$r$を$s$、

三角形$ABC$が

$D_r$に含まれるような最小の$r$を$t$と表す。

(1)$\angle BAC=\dfrac{\pi}{3}$のとき、$s$と$t$を求めよ。

(2)$\angle BAC=\dfrac{2\pi}{3}$のとき、$s$と$t$を求めよ。

(3)$0\lt \theta \lt \pi$を満たす$\theta$に対して、

$\angle BAC=\theta$のとき、$s$と$t$を$\theta$を用いて表せ。

$2025$年東京大学文系過去問題
この動画を見る 

【中学数学】2次関数の問題~2024年度北海道公立高校入試大問3~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ユキさんたちのクラスでは、数学の授業で関数のグラフについてコンピュータを使って学習しています。次の問いに答えなさい。
問1 先生が提示した画面1には、関数$y=x^{ 2 }$のグラフと、このグラフ上の2点A、Bを通る直線が表示されています。点Aの$x$座標は3、点Bの$x$座標は-2です。点Oは原点とします。
ユキさんは、画面1を見て、2点A、Bを通る直線の式を求めたいと考え、求め方について、次のような見通しを立てています。

ユキさんの見通し
2点A、Bを通る直線の式を求めるには、2点A、Bの座標がわかれば良い。

次の(1)、(2)に答えなさい。
(1)点Aの$y$座標を求めなさい。
(2)ユキさんの見通しを用いて、2点A、Bを通る直線の式を求めなさい。

問2 △PQRが直角二等辺三角形になる時の$t$の値を求めなさい。

先生が提示した画面2には2つの関数$y=2x^{ 2 }$・・・①,$y=\frac{1}{2}x^{ 2 }$・・・②のグラフが表示されています。①のグラフ上に点Pがあり、点Pの$x$座標は$t$です。点Qは、点Pと$y$軸について対称な点です。また、点Rは、点Pを通り、$y$軸に平行な直線と②のグラフとの交点です。点Oは原点とし、$t$>0とします。

ユキさんたちは、点Pを①のグラフ上で動かすことで、△PQRがどのように変化するかについて、話し合っています。
ユキさん「点Pを動かすと、点Qと点Rも同時に動くね。」
ルイさん「このとき、△PQRはいつでも直角三角形になるね。」
ユキさん「・・・あれ?△PQRが直角に等辺三角形に見えるときがあるよ?」
ルイさん「本当に直角二等辺三角形になるときがあるのかな。」
ユキさん「じゃあ、△PQRが直角二等辺三角形になるときの点Pの座標を求めてみようか。」
ルイさん「点Pの座標を求めるには、$t$の値がわかればいいね。」

△PQRが直角二等辺三角形になるときの$t$の値を求めなさい。
この動画を見る 

福田のおもしろ数学426〜99個の分数の積を効率よく求める

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\prod_{ k = 1 }^n ak=a_1a_2\cdots a_n
\end{eqnarray}$とするとき、

$\displaystyle \prod_{k=2}^{100} \dfrac{k^3+1}{k^3-1}$を求めよ。
   
この動画を見る 

福田の数学〜東京大学2025文系第1問〜放物線とその法線の交点のx座標の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$a$を正の実数とする。

座標平面において、

放物線$C:y=x^2$上の点$P(a,a^2)$に

おける$C$の接線と直交し、$P$を通る直線を$\ell$とおく。

$\ell$と$C$の交点のうち、$P$と異なる点を$Q$と置く。

(1)$Q$の$x$座標を求めよ。

$Q$における$C$の接線と直交し、$Q$を通る直線を$m$とおく。

$m$と$C$の交点のうち、$Q$と異なる点を$R$とおく。

(2)$a$がすべての正の実数を動くとき、

$R$の$x$座標の最小値を求めよ。

$2025$年東京大学文系過去問題
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明8 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)a>0のとき、a+16/a の最小値を求めよ。
(2)a>0のとき、(a+1/a)(a+16/a) の最小値を求めよ。
(3)a>0 ,b>0 ,ab=12のとき、a+b の最小値を
求めよ。
(4)a>0 ,b>0 ,$2a+3b=4\sqrt{2}$ のとき、abの最大値を求めよ。
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0,b>0,c>0のとき、(a+b)(b+c)(c+a)≧8abc が成り立つことを証明せよ。また、等号が成り立つのはどのようなときか。
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0<a<b$ ,$a+b=2$のとき、$1$ ,$ab$ ,$a^2+b^2$ を小さい方から順に並べよ。
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明5 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0 ,b>0のとき、$\sqrt{ab}$ , $\displaystyle \frac{2ab}{a+b}$ の大小関係を調べよ。
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
不等式$\sqrt{a^2+b^2}≦|a|+|b|≦\sqrt{2}\sqrt{a^2+b^2}$ を証明せよ。
この動画を見る 
PAGE TOP