高校入試過去問(数学)
【信じて進め…!】連立方程式:関西学院高等部~全国入試問題解法
単元:
#数学(中学生)#高校入試過去問(数学)#関西学院高等部
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+0.3y=3 \\
0.7x+\dfrac{2}{7}y=1
\end{array}
\right.
\end{eqnarray}$
次の連立方程式を解け.
関西学院高等学校過去問
この動画を見る
$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+0.3y=3 \\
0.7x+\dfrac{2}{7}y=1
\end{array}
\right.
\end{eqnarray}$
次の連立方程式を解け.
関西学院高等学校過去問
【条件をよく見て…!】図形:愛知県公立高等学校~全国入試問題解法
単元:
#数学(中学生)#高校入試過去問(数学)#愛知県公立高校入試
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ A,B,C,D$は円$O$の周上の点である.
$ AO $と$ BC $は平行であり, $ \angle AOB=48°$である.
$ \angle ADC $の大きさは$ \Box $度である.
愛知県入試問題過去問
この動画を見る
$ A,B,C,D$は円$O$の周上の点である.
$ AO $と$ BC $は平行であり, $ \angle AOB=48°$である.
$ \angle ADC $の大きさは$ \Box $度である.
愛知県入試問題過去問
【よく見てやれば…!】平方根:青山学院高等部~全国入試問題解法
単元:
#数学(中学生)#高校入試過去問(数学)#青山学院高等部
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \left(\dfrac{1}{2\sqrt2}+\sqrt3 \right)\left(\sqrt2-\dfrac{1}{2\sqrt3}\right)$
次の計算をせよ.
青山学院高等部過去問
この動画を見る
$ \left(\dfrac{1}{2\sqrt2}+\sqrt3 \right)\left(\sqrt2-\dfrac{1}{2\sqrt3}\right)$
次の計算をせよ.
青山学院高等部過去問
【ルールに忠実に…!】平方根:東京学芸大学附属高等学校~全国入試問題解法
単元:
#数学(中学生)#高校入試過去問(数学)#東京学芸大学附属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \dfrac{\sqrt{(-2)^2}(\sqrt2+\sqrt3)^2}{\sqrt2}+\dfrac{(3-\sqrt6)^2}{\sqrt3}$
を計算しなさい.
東京学芸大附属高校過去問
この動画を見る
$ \dfrac{\sqrt{(-2)^2}(\sqrt2+\sqrt3)^2}{\sqrt2}+\dfrac{(3-\sqrt6)^2}{\sqrt3}$
を計算しなさい.
東京学芸大附属高校過去問
【条件をフル活用…!】図形:兵庫県公立高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)#兵庫県公立高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC $の$ AB$は12cmであり,$ BC $は18cmである.
$ D $は$ \angle BAC $の二等分線と辺$ BC $の交点である.
$ \angle ACD=\angle CAD $であることを証明しなさい.
兵庫県公立高等学校過去問
この動画を見る
$ \triangle ABC $の$ AB$は12cmであり,$ BC $は18cmである.
$ D $は$ \angle BAC $の二等分線と辺$ BC $の交点である.
$ \angle ACD=\angle CAD $であることを証明しなさい.
兵庫県公立高等学校過去問
【それを決めるのは…!】整数:大阪府公立高等学校~全国入試問題解法
単元:
#数学(中学生)#高校入試過去問(数学)#大阪府公立高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ n $を自然数とするとき,$ 5-\dfrac{78}{n}$の値が自然数となるような
最も小さい自然数$ n $の値を求めなさい.
大阪府公立高等学校過去問
この動画を見る
$ n $を自然数とするとき,$ 5-\dfrac{78}{n}$の値が自然数となるような
最も小さい自然数$ n $の値を求めなさい.
大阪府公立高等学校過去問
【まず手を付けよう…!】二次方程式:法政大学第二高等学校~全国入試問題解法
単元:
#中3数学#2次方程式#高校入試過去問(数学)#法政大学第二高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$ (x+2)^2+x^2=(x+4)^2-12 $を解きなさい.
法政大学第二高等学校過去問
この動画を見る
2次方程式$ (x+2)^2+x^2=(x+4)^2-12 $を解きなさい.
法政大学第二高等学校過去問
【これなら「分かる」…!】整数:大阪府公立高等学校~全国入試問題解法
単元:
#高校入試過去問(数学)#大阪府公立高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ n $を自然数とする.
$ n \leqq \sqrt x \leqq n+1 $を満たす自然数$ x $の個数が100であるときの
$ n $の値を求めなさい.
大阪府公立高等学校過去問
この動画を見る
$ n $を自然数とする.
$ n \leqq \sqrt x \leqq n+1 $を満たす自然数$ x $の個数が100であるときの
$ n $の値を求めなさい.
大阪府公立高等学校過去問
【学んだことを活かせ…!】連立方程式:明治大学付属中野高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治大学付属中野高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.
明治大学付属中野高等学校過去問
この動画を見る
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.
明治大学付属中野高等学校過去問
【な、長い…!】平方根:洛南高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)#洛南高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (1+\sqrt2+\sqrt4+\sqrt8+\sqrt{16}+\sqrt{32})$
$ \times (1-\sqrt2+\sqrt4-\sqrt8+\sqrt{16}-\sqrt{32}$
を計算しなさい.
洛南高等学校過去問
この動画を見る
$ (1+\sqrt2+\sqrt4+\sqrt8+\sqrt{16}+\sqrt{32})$
$ \times (1-\sqrt2+\sqrt4-\sqrt8+\sqrt{16}-\sqrt{32}$
を計算しなさい.
洛南高等学校過去問
平方根を含む応用問題~全国入試問題解法 #shorts #高校入試 #数学 #頭の体操 #サウンド
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{65}-5 $の整数部分を$ n $とし,小数部分を$ t $とする.
(1)$ n $はいくつか?
(2)$ \dfrac{1}{4}t^2+4t=\Box $である.
東海高校過去問
この動画を見る
$ \sqrt{65}-5 $の整数部分を$ n $とし,小数部分を$ t $とする.
(1)$ n $はいくつか?
(2)$ \dfrac{1}{4}t^2+4t=\Box $である.
東海高校過去問
【案外戸惑う…!】整数:福岡大学付属大濠高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#1次関数#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
直線$ y=-\dfrac{1}{2}x+10 $上の点で
$ x $座標も$ y $座標も正の整数である点は全部で$ \Box $個ある.
福岡大学付属大濠高等学校過去問
この動画を見る
直線$ y=-\dfrac{1}{2}x+10 $上の点で
$ x $座標も$ y $座標も正の整数である点は全部で$ \Box $個ある.
福岡大学付属大濠高等学校過去問
【アナタならどうする…!?】連立方程式:明治大学付属明治高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治大学付属明治高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2-4y^2-10x+25=0 ・・・① \\
x^2+x-6-2xy+4y=0・・・②
\end{array}
\right.
\end{eqnarray}$
上式が成り立つ$ x,y $の組をすべて求めよ.
明治大学付属明治高等学校過去問
この動画を見る
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2-4y^2-10x+25=0 ・・・① \\
x^2+x-6-2xy+4y=0・・・②
\end{array}
\right.
\end{eqnarray}$
上式が成り立つ$ x,y $の組をすべて求めよ.
明治大学付属明治高等学校過去問
【次の一手を読め…!】文字式:東海高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)#東海高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a=2(\sqrt{13}-2)$の$ b $は整数部分であり,$ c $は小数部分である.
このとき,$ (a+3b+1)(c+1)$の値は$ \Box $である.
東海高等学校過去問
この動画を見る
$ a=2(\sqrt{13}-2)$の$ b $は整数部分であり,$ c $は小数部分である.
このとき,$ (a+3b+1)(c+1)$の値は$ \Box $である.
東海高等学校過去問
問題の意味は分かるけど解答が難しい入試問題~全国入試問題解法 #shorts #高校入試 #数学 #頭の体操 #既約分数
単元:
#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \dfrac{3007}{3201}$を既約分数に直すと$ \Box $である.
慶應義塾高校過去問
この動画を見る
$ \dfrac{3007}{3201}$を既約分数に直すと$ \Box $である.
慶應義塾高校過去問
【イメージできるか…!】法政大学第二高等学校:二次関数~全国入試問題解法
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#法政大学第二高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
定義域$ -6 \leqq x \leqq -2 $である2つの関数
$ y=\dfrac{1}{2}x^2, y=ax+b(a \lt 0)$の値域が一致するような
定数$ a,b $の値を求めなさい.
法政大第二高校過去問
この動画を見る
定義域$ -6 \leqq x \leqq -2 $である2つの関数
$ y=\dfrac{1}{2}x^2, y=ax+b(a \lt 0)$の値域が一致するような
定数$ a,b $の値を求めなさい.
法政大第二高校過去問
【理解すれば一瞬…!】方程式:法政大学国際高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#法政大学国際高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x(x+1)(2x+1)=0 $を満たす$ x $の値をすべて求めよ.
法政大国際高校過去問
この動画を見る
$ x(x+1)(2x+1)=0 $を満たす$ x $の値をすべて求めよ.
法政大国際高校過去問
【ミスしやすい構造とは…!】二次方程式:東京都立八王子東高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#東京都立八王子東高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$ 3(3-x)=2(x-2)^2$を解け.
都立八王子東高校過去問
この動画を見る
2次方程式$ 3(3-x)=2(x-2)^2$を解け.
都立八王子東高校過去問
【高校入試で4次の項…!?】文字式:ラ・サール高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)#ラ・サール高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x=\sqrt7+\sqrt2 $
$ y=\sqrt7-\sqrt2 $ のとき
$ x^4-6x^2y^2+y^4 $の値を求めよ.
ラ・サール高校過去問
この動画を見る
$ x=\sqrt7+\sqrt2 $
$ y=\sqrt7-\sqrt2 $ のとき
$ x^4-6x^2y^2+y^4 $の値を求めよ.
ラ・サール高校過去問
高等学校入学試験予想問題:中央大学附属高等学校~全国入試問題解法
単元:
#数学(中学生)#中央大学附属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.
(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.
$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.
(2)点$ B $の座標を求めなさい.
(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.
$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.
中央大学附属高等学校予想問題
この動画を見る
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.
(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.
$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.
(2)点$ B $の座標を求めなさい.
(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.
$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.
中央大学附属高等学校予想問題
【スマートに行こう…!】因数分解:立命館高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#立命館高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (2x+3y)^2-3(x-3y)\times (x+3y)-4y^2 $
を因数分解しなさい.
立命館高校過去問
この動画を見る
$ (2x+3y)^2-3(x-3y)\times (x+3y)-4y^2 $
を因数分解しなさい.
立命館高校過去問
高等学校入学試験予想問題:専修大学附属高等学校~全国入試問題解法
単元:
#数学(中学生)#専修大学附属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えよ.
$ \boxed{1}$
(1)
$ (\sqrt8-\sqrt{50})^3 \div \sqrt6+\sqrt{27}=? $
(2)
$ x^2y^2+5xy-24 $を因数分解しなさい.
$ \boxed{2}$
(1)
$ AB=BC=CA=6$cm,$ OA=OB=OC=6\sqrt3$cmの三角錐$OABC$がある.
$ \triangle ABC $を底面としたとき,この三角錐の高さは$ 4\sqrt6$cmである.
$ \triangle OAB $を底面としたとき,この三角錐の高さを求めなさい.
(2)
箱の中に$[1],[2],[3],[4],[5]$の5枚のカードが入っている.
この箱から,同時に2枚のカードを取り出すとき,
取り出したカードに$[3]$のカードがふくまれる確率を求めなさい.
ただし,どのカードを取り出すことも同様に確からしいものとする.
$ \boxed{3}$
$ \angle A=90°$の直角二等辺三角形の内部に,
$ PA=1,PB=\sqrt2,PC=2 $をみたす点$ P $をとり,
点$ P $と辺$ AB,BC,CA $2関して対称な点をそれぞれ$ D,E,F $とする.
(1)
$ DE,EF,FD $の長さをそれぞれ求めなさい.
(2)
五角形$ BECFD $の面積を求めなさい.
(3)
$ AB $の長さを求めなさい.
(4)
面積比$ \triangle PAB:\triangle PBC:\triangle PCA $を求めなさい.
専修大学附属高等学校予想問題
この動画を見る
次の問いに答えよ.
$ \boxed{1}$
(1)
$ (\sqrt8-\sqrt{50})^3 \div \sqrt6+\sqrt{27}=? $
(2)
$ x^2y^2+5xy-24 $を因数分解しなさい.
$ \boxed{2}$
(1)
$ AB=BC=CA=6$cm,$ OA=OB=OC=6\sqrt3$cmの三角錐$OABC$がある.
$ \triangle ABC $を底面としたとき,この三角錐の高さは$ 4\sqrt6$cmである.
$ \triangle OAB $を底面としたとき,この三角錐の高さを求めなさい.
(2)
箱の中に$[1],[2],[3],[4],[5]$の5枚のカードが入っている.
この箱から,同時に2枚のカードを取り出すとき,
取り出したカードに$[3]$のカードがふくまれる確率を求めなさい.
ただし,どのカードを取り出すことも同様に確からしいものとする.
$ \boxed{3}$
$ \angle A=90°$の直角二等辺三角形の内部に,
$ PA=1,PB=\sqrt2,PC=2 $をみたす点$ P $をとり,
点$ P $と辺$ AB,BC,CA $2関して対称な点をそれぞれ$ D,E,F $とする.
(1)
$ DE,EF,FD $の長さをそれぞれ求めなさい.
(2)
五角形$ BECFD $の面積を求めなさい.
(3)
$ AB $の長さを求めなさい.
(4)
面積比$ \triangle PAB:\triangle PBC:\triangle PCA $を求めなさい.
専修大学附属高等学校予想問題
【意味は分かる…!】整数:東京都立産業技術高等専門学校~全国入試問題解法
単元:
#数学(中学生)#高校入試過去問(数学)#東京都立産業技術高等専門学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 230 $をある自然数$ n $で割ると余りが$ 20 $になった.
このような自然数$ n $は何個あるか.
東京都立産業技術高等専門学校過去問
この動画を見る
$ 230 $をある自然数$ n $で割ると余りが$ 20 $になった.
このような自然数$ n $は何個あるか.
東京都立産業技術高等専門学校過去問
【中学数学】円周角の問題演習~2023年愛知県公立高校入試~【高校受験】
単元:
#数学(中学生)#中3数学#円#高校入試過去問(数学)#愛知県公立高校入試
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
2023年度の愛知県公立高校入試大問3の過去問解説です
この動画を見る
2023年度の愛知県公立高校入試大問3の過去問解説です
高等学校入学試験予想問題:開成高等学校~全国入試問題解法
単元:
#数学(中学生)#開成高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えよ.
$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.
【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.
辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.
(1)この立体の表面積を求めよ.
(2)この立体の体積を求めよ.
(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.
$ \boxed{2}$
図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.
①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.
(1)さいころを2回ふってゴールする確率を求めよ.
(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.
(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.
$ \boxed{3}$
$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.
1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.
2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.
このとき,$ x $と$ y $の値を求めよ.
開成高等学校予想問題
この動画を見る
次の問いに答えよ.
$ \boxed{1}$
三角形と四角形を組み合わせて作られた立体があり,
【図1】はその見取り図である.
【図2】から【図5】は,この立体を真上,真下,真正面,右側からみたときの図である.
$ \rhd $【図2】では四角形$ABFE,DAEI,HCAD,CGBA,$【図3】では四角形$FGHI$,
【図4】では四角形$ HCAD $,【図5】では四角形$ IDEA $は正方形である.
また,【図4】では$ \triangle AIG $,【図5】では$ \triangle AFH $は直角二等辺三角形である.
辺$ AB $の実際の長さが3cmであるとき,次の問いに答えよ.
(1)この立体の表面積を求めよ.
(2)この立体の体積を求めよ.
(3)この立体を3点$ C,H,I $をふくむ平面で2つに分ける.
面$ FGHI $をふくむ側の立体の体積を求めよ.
$ \boxed{2}$
図は,1から6までの目が書かれているさいころを1回ずつふって,
出た目の数だけコマをゴールに向かって進めるボードゲームの図である.
以下のルールに従ってコマを進めるとき,後の問いに答えよ.
ただし,後の問いは,すべてスタート地点からはじめるものとし,
さいころの1から6までの目の出方は,同様に確からしいものとする.
①出た目の数だけ駒を進める途中にゴールに着いた時は,残りのコマを戻す.
例えば,10のマスにいて,5の目が出た場合,3マス進んで2マス戻って11のマスにとまる.
②とまったマスに指示が書かれている場合は,その指示に従うものとする.
③ボードのマスに書かれている「すすむ」はゴールの方向,「もどる」はゴールと
反対方向に移動することをいう.
(1)さいころを2回ふってゴールする確率を求めよ.
(2)さいころを1回ふったとき,6の目が出た.このあと,さいころを2回ふって
ゴールするような目の出方は全部で何通りあるかを求めよ.
(3)さいころを3回ふってゴールするような目の出方は全部で
何通りあるかを求めよ.
$ \boxed{3}$
$ A,B 2$つの蛇口がついた水槽があり,$ A $からは毎分$ x $L,$ B $からは
毎分$ y $Lの水が入る.この水槽に,空の状態から$ A,B$両方使って水を入れると
5分で満水になる.
1日目,空の状態から$ A,B$両方使って水を入れ始めたが,2分後,
$ B $から入る水の量が毎分$ ((1/2)y-1)$Lに減ったため,その後
水槽が満水になるのに4分かかった.
2日目,空の状態から$ A,B$両方使って水を入れ始めたが,最初から,
$ A $からは毎分$ (3/4)x $L,$ B $からは毎分$ ((1/2)y-1)$ Lしか
水が入らなかったので,7分間水を入れても水槽が満水になるには,16L足りなかった.
このとき,$ x $と$ y $の値を求めよ.
開成高等学校予想問題
【ヒントを活かせ…!】二次方程式:中央大学附属高等学校~全国入試問題解法
単元:
#数学(中学生)#高校入試過去問(数学)#中央大学附属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ M=\dfrac{6m}{m^2+1}+\dfrac{m^2+1}{m}-5 $
$ M=0 $を満たす$ m $の値をすべて求めなさい.
中央大附属高校過去問
この動画を見る
$ M=\dfrac{6m}{m^2+1}+\dfrac{m^2+1}{m}-5 $
$ M=0 $を満たす$ m $の値をすべて求めなさい.
中央大附属高校過去問
高等学校入学試験予想問題:関西学院高等部~全国入試問題解法
単元:
#数学(中学生)#関西学院高等部
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の問いに答えよ.
$ \boxed{1}$
(1)$ \left(-\dfrac{4}{3}xy^2\right)^2\times \left(-\dfrac{9}{4}x^3y^4\right)\div \left(-\dfrac{3}{2}x^2y\right)^3 $
(2)$ \dfrac{15\sqrt2}{\sqrt6}-\dfrac{4}{\sqrt2}-\left(\dfrac{18}{\sqrt3}-\sqrt{18}\right)$
$ \boxed{2}$
連立方程式$ \begin{eqnarray}
\left\{
\begin{array}{l}
2(x+y)-3(x-4)=6 \\
\dfrac{x}{2}-\dfrac{2y-4}{3}=2
\end{array}
\right.
\end{eqnarray}$ を解け.
$ \boxed{3}$
立方体の6つの面をぬり分けるとき,次の場合のぬり分け方は何通りあるか.
ただし,回転して一致するぬり分け方は同じと見なす.
(1)赤,青,黄,緑,黒,白の6色をすべて使う場合
(2)赤,青,黄,緑,黒の5色をすべて使い,隣り合う面は異なる色を塗る場合
(3)赤,青,黄,緑,黒の5色をすべて使う場合
関西学院高等部予想問題
この動画を見る
次の問いに答えよ.
$ \boxed{1}$
(1)$ \left(-\dfrac{4}{3}xy^2\right)^2\times \left(-\dfrac{9}{4}x^3y^4\right)\div \left(-\dfrac{3}{2}x^2y\right)^3 $
(2)$ \dfrac{15\sqrt2}{\sqrt6}-\dfrac{4}{\sqrt2}-\left(\dfrac{18}{\sqrt3}-\sqrt{18}\right)$
$ \boxed{2}$
連立方程式$ \begin{eqnarray}
\left\{
\begin{array}{l}
2(x+y)-3(x-4)=6 \\
\dfrac{x}{2}-\dfrac{2y-4}{3}=2
\end{array}
\right.
\end{eqnarray}$ を解け.
$ \boxed{3}$
立方体の6つの面をぬり分けるとき,次の場合のぬり分け方は何通りあるか.
ただし,回転して一致するぬり分け方は同じと見なす.
(1)赤,青,黄,緑,黒,白の6色をすべて使う場合
(2)赤,青,黄,緑,黒の5色をすべて使い,隣り合う面は異なる色を塗る場合
(3)赤,青,黄,緑,黒の5色をすべて使う場合
関西学院高等部予想問題
【大切な応用…!】二次関数:広島大学附属高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#1次関数#平行と合同#高校入試過去問(数学)#広島大学附属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
関数$ y=\dfrac{1}{4}x^2 $上に点$ A $は$ x=-2 $である,点$ B $は$ x=6 $である.
直線$ \ell $は2点$ A,B$を通る直線である.
点$ C $は関数$ y=\dfrac{1}{4}x^2 $上の点で
$ \triangle ABC=\triangle ABO $となるもの.
$ x $座標が最も大きくなるときの点$ C $の座標を求めなさい.
広大付属高校過去問
この動画を見る
関数$ y=\dfrac{1}{4}x^2 $上に点$ A $は$ x=-2 $である,点$ B $は$ x=6 $である.
直線$ \ell $は2点$ A,B$を通る直線である.
点$ C $は関数$ y=\dfrac{1}{4}x^2 $上の点で
$ \triangle ABC=\triangle ABO $となるもの.
$ x $座標が最も大きくなるときの点$ C $の座標を求めなさい.
広大付属高校過去問
【得点源にするために…!】連立方程式:西大和学園高等学校~全国入試問題解法
単元:
#中2数学#連立方程式#高校入試過去問(数学)#西大和学園高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a $を定数とする.
$ x,y $についての連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
4y-3x=a \\
2x-3y=4
\end{array}
\right.
\end{eqnarray}$の解が$ x+y=a $を満たすとき,
定数$ a $の値を求めよ.
西大和学園高校過去問
この動画を見る
$ a $を定数とする.
$ x,y $についての連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
4y-3x=a \\
2x-3y=4
\end{array}
\right.
\end{eqnarray}$の解が$ x+y=a $を満たすとき,
定数$ a $の値を求めよ.
西大和学園高校過去問
【中学数学】箱ひげ図データの分析~2022年度北海道公立高校入試~【高校受験】
単元:
#数学(中学生)#中1数学#資料の活用#高校入試過去問(数学)#北海道公立高校入試
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
北海道公立高校2022年数学過去問
春奈さんたちの中学校では, 3年生のA組30人全員と, B組30人全員の50m走の記録を調査 しました。 次の問いに答えなさい。
問1 図1は, A組, B組全員の記録を、 それぞれ箱ひげ図にまとめたものです。(図は動画内参照)
次の(1),(2) に答えなさい。
(1) B組の記録の第3四分位数を求めなさい
(2) データの散らばり (分布) の程度について、 図1から読みとれることとして
最も適当なものを、次のア~エから1つ選びなさい
ア範囲は, A組の方がB組よりも小さい。
イ四分位範囲は, A組の方がB組よりも大きい。
ウ平均値は, A組の方がB組よりも小さい。
エ最大値は, A組の方がB組よりも大きい。
この動画を見る
北海道公立高校2022年数学過去問
春奈さんたちの中学校では, 3年生のA組30人全員と, B組30人全員の50m走の記録を調査 しました。 次の問いに答えなさい。
問1 図1は, A組, B組全員の記録を、 それぞれ箱ひげ図にまとめたものです。(図は動画内参照)
次の(1),(2) に答えなさい。
(1) B組の記録の第3四分位数を求めなさい
(2) データの散らばり (分布) の程度について、 図1から読みとれることとして
最も適当なものを、次のア~エから1つ選びなさい
ア範囲は, A組の方がB組よりも小さい。
イ四分位範囲は, A組の方がB組よりも大きい。
ウ平均値は, A組の方がB組よりも小さい。
エ最大値は, A組の方がB組よりも大きい。