連立方程式
【最初からこうすれば良かった!】3元1次連立方程式②:中学からの連立方程式~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の3元1次連立方程式を解け.
$ x+y-z=-1 $
$ x-y+z=3 $
$ -x+y+z=7 $
この動画を見る
次の3元1次連立方程式を解け.
$ x+y-z=-1 $
$ x-y+z=3 $
$ -x+y+z=7 $
【高校受験対策】数学-死守38
単元:
#数学(中学生)#中1数学#中2数学#中3数学#方程式#連立方程式#2次方程式#1次関数#確率#2次関数#円
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守38
①$-7+5$を計算しなさい。
➁$\frac{3x-2}{5} \times10$を計算しなさい。
③$5ab^2 \div\frac{a}{3}$を計算しなさい。
④$(x+8)(x-6)$を計算しなさい。
⑤$25$の平方根を求めなさい。
⑥関数$y=\frac{a}{x}$のグラフが点$(6,-2)$を通るとき、$a$の値をを求めなさい。
⑦連立方程式を解きなさい。
$3x+y=-5$
$2x+3y=6$
⑧二次方程式を解きなさい。
$x^2+7x+1=0$
⑨右の図1で$\angle x$大きさを求めなさい。
⑩大小2つのさいころを同時に投げるとき、 2つとも同じ目が出る確率を求めなさい。
⑪右の図2において、点$A,B,C$は円$O$の周上の点である。
$\angle x$の大きさを求めなさい。
⑫左の図3のように、$y=ax^2(a\gt0)$のグラフ上 に2点$A,B$があり、$x$座標はそれぞれ$-6,4$である。
直線$AB$の傾きがであるとき、$a$の値を求めなさい。
この動画を見る
高校受験対策・死守38
①$-7+5$を計算しなさい。
➁$\frac{3x-2}{5} \times10$を計算しなさい。
③$5ab^2 \div\frac{a}{3}$を計算しなさい。
④$(x+8)(x-6)$を計算しなさい。
⑤$25$の平方根を求めなさい。
⑥関数$y=\frac{a}{x}$のグラフが点$(6,-2)$を通るとき、$a$の値をを求めなさい。
⑦連立方程式を解きなさい。
$3x+y=-5$
$2x+3y=6$
⑧二次方程式を解きなさい。
$x^2+7x+1=0$
⑨右の図1で$\angle x$大きさを求めなさい。
⑩大小2つのさいころを同時に投げるとき、 2つとも同じ目が出る確率を求めなさい。
⑪右の図2において、点$A,B,C$は円$O$の周上の点である。
$\angle x$の大きさを求めなさい。
⑫左の図3のように、$y=ax^2(a\gt0)$のグラフ上 に2点$A,B$があり、$x$座標はそれぞれ$-6,4$である。
直線$AB$の傾きがであるとき、$a$の値を求めなさい。
代入法どっちにいれてええん?
連立方程式は基礎が大切!~全国入試問題解法 #数学 #数検 #高校入試 #名言 #連立方程式
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式は基礎が大切!~全国入試問題解法
連立方程式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + 3y = 1 \\
8x + 9y = 7
\end{array}
\right.
\end{eqnarray}$
この動画を見る
連立方程式は基礎が大切!~全国入試問題解法
連立方程式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + 3y = 1 \\
8x + 9y = 7
\end{array}
\right.
\end{eqnarray}$
【ぜひ、ここでマスターしたい!】連立方程式:活水高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +1= 0 \\
3x + y +9= 0
\end{array}
\right.
\end{eqnarray}$
活水高等学校過去問
この動画を見る
次の方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +1= 0 \\
3x + y +9= 0
\end{array}
\right.
\end{eqnarray}$
活水高等学校過去問
数学を軽い気持ちで臨む!~全国入試問題解法 #数学 #高校入試 #勉強 #点数 #ライブ
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
数学を軽い気持ちで臨む!
$\begin{eqnarray}
\left\{
\begin{array}{l}
xy + x + 2y= 6 \\
2xy + x-y = 5
\end{array}
\right.
\end{eqnarray}$
を解け。
この動画を見る
数学を軽い気持ちで臨む!
$\begin{eqnarray}
\left\{
\begin{array}{l}
xy + x + 2y= 6 \\
2xy + x-y = 5
\end{array}
\right.
\end{eqnarray}$
を解け。
こんな解き方知ってる?
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=-9 \\
-2x+9y=-16
\end{array}
\right.
\end{eqnarray}$
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x+2y=-9 \\
-2x+9y=-16
\end{array}
\right.
\end{eqnarray}$
連立方程式の基本的な考え方
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
連立方程式の基本的な考え方について説明動画です
$\begin{cases}
x+2y=5 \\
5x+4y=13
\end{cases}$
この動画を見る
連立方程式の基本的な考え方について説明動画です
$\begin{cases}
x+2y=5 \\
5x+4y=13
\end{cases}$
複雑な連立方程式 久留米大附設
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{1}{x-1} + y = -1 \\
\frac{2}{x-1} + \frac{y}{2} = 4
\end{array}
\right.
\end{eqnarray}
久留米大学附設高等学校
この動画を見る
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{1}{x-1} + y = -1 \\
\frac{2}{x-1} + \frac{y}{2} = 4
\end{array}
\right.
\end{eqnarray}
久留米大学附設高等学校
連立方程式 法政一
単元:
#連立方程式
指導講師:
数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
1042x + 347y = 2 \\
1652x + 551y = -2
\end{array}
\right.
\end{eqnarray}
法政大学第一高等学校
この動画を見る
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
1042x + 347y = 2 \\
1652x + 551y = -2
\end{array}
\right.
\end{eqnarray}
法政大学第一高等学校
大学入試の連立方程式 東北学院大
単元:
#連立方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x(y+z)=5 \\
y(z+x)=8 \\
z(x+y)=9
\end{array}
\right.
\end{eqnarray}
東北学院大学
この動画を見る
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x(y+z)=5 \\
y(z+x)=8 \\
z(x+y)=9
\end{array}
\right.
\end{eqnarray}
東北学院大学
連立方程式は知ってるカタチに直せ…!~全国入試問題解法 #shorts, #数学, #高校入試, #頭の体操, #連立方程式,
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x\div(2y+13)=3:1 \\
5x+6y=3
\end{array}
\right.
\end{eqnarray}$
次の連立方程式を解きなさい.
広大付属高校過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x\div(2y+13)=3:1 \\
5x+6y=3
\end{array}
\right.
\end{eqnarray}$
次の連立方程式を解きなさい.
広大付属高校過去問
【学んだことを活かせ…!】連立方程式:明治大学付属中野高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治大学付属中野高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.
明治大学付属中野高等学校過去問
この動画を見る
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.
明治大学付属中野高等学校過去問
【アナタならどうする…!?】連立方程式:明治大学付属明治高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治大学付属明治高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2-4y^2-10x+25=0 ・・・① \\
x^2+x-6-2xy+4y=0・・・②
\end{array}
\right.
\end{eqnarray}$
上式が成り立つ$ x,y $の組をすべて求めよ.
明治大学付属明治高等学校過去問
この動画を見る
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^2-4y^2-10x+25=0 ・・・① \\
x^2+x-6-2xy+4y=0・・・②
\end{array}
\right.
\end{eqnarray}$
上式が成り立つ$ x,y $の組をすべて求めよ.
明治大学付属明治高等学校過去問
【得点源にするために…!】連立方程式:西大和学園高等学校~全国入試問題解法
単元:
#中2数学#連立方程式#高校入試過去問(数学)#西大和学園高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a $を定数とする.
$ x,y $についての連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
4y-3x=a \\
2x-3y=4
\end{array}
\right.
\end{eqnarray}$の解が$ x+y=a $を満たすとき,
定数$ a $の値を求めよ.
西大和学園高校過去問
この動画を見る
$ a $を定数とする.
$ x,y $についての連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
4y-3x=a \\
2x-3y=4
\end{array}
\right.
\end{eqnarray}$の解が$ x+y=a $を満たすとき,
定数$ a $の値を求めよ.
西大和学園高校過去問
福田のおもしろ数学015〜ジュニア数学オリンピック本戦問題〜2つの式を満たす4つの自然数を求める
単元:
#数学(中学生)#中2数学#連立方程式#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=cd \\
c+d=ab
\end{array}
\right.
\end{eqnarray}$
を満たす正の整数 $a,b,c,d$は?
ジュニア数学オリンピック過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=cd \\
c+d=ab
\end{array}
\right.
\end{eqnarray}$
を満たす正の整数 $a,b,c,d$は?
ジュニア数学オリンピック過去問
福田のおもしろ数学014〜恒例10秒チャレンジ〜3変数の連立方程式
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=4 \\
y+z=3 \\
z+x=5
\end{array}
\right.
\end{eqnarray}$
を解け.
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=4 \\
y+z=3 \\
z+x=5
\end{array}
\right.
\end{eqnarray}$
を解け.
【ミスをなくすひと工夫…!】連立方程式:東京都立立川高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$ \begin{eqnarray}
\left\{
\begin{array}{l}
14x+3y=17.5 \\
3x+2y=\dfrac{69}{7}
\end{array}
\right.
\end{eqnarray}$ を解け.
都立立川高校過去問
この動画を見る
連立方程式$ \begin{eqnarray}
\left\{
\begin{array}{l}
14x+3y=17.5 \\
3x+2y=\dfrac{69}{7}
\end{array}
\right.
\end{eqnarray}$ を解け.
都立立川高校過去問
数学の入試で知る解法~全国入試問題解法 #shorts #直線 #高校受験 #mathematics #sound
単元:
#数学(中学生)#中2数学#連立方程式#1次関数
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2点$ (-1,1),(2,7)$を通る直線の式を答えなさい.
新潟県入試問題過去問
この動画を見る
2点$ (-1,1),(2,7)$を通る直線の式を答えなさい.
新潟県入試問題過去問
【式は2つ、文字は3つ…!】整数:慶応義塾女子高等学校~全国入試問題解法
単元:
#中1数学#中2数学#連立方程式#文字と式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \color{red}{整数x}$に$ \color{red}{6}$を加えると$ \color{red}{整数m}$の平方になり,
$ \color{red}{x}$から$ \color{red}{17}$を引くと$\color{red}{整数n}$の平方になる.
m,nはともに正として$ \color{orange}{m,n,x}$の値を求めなさい.
慶應女子高校過去問
この動画を見る
$ \color{red}{整数x}$に$ \color{red}{6}$を加えると$ \color{red}{整数m}$の平方になり,
$ \color{red}{x}$から$ \color{red}{17}$を引くと$\color{red}{整数n}$の平方になる.
m,nはともに正として$ \color{orange}{m,n,x}$の値を求めなさい.
慶應女子高校過去問
【ケントウする点は…!】連立方程式:大阪星光学院高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $の連立方程式であり,$ a,b $は正の数である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
ax-y=4 \\
x+by=7
\end{array}
\right.
\end{eqnarray}$
の解を$ a $と$ b $を用いて表すと$ x=\Box,y=\Box $である.
大阪星光学院高校過去問
$ x,y $の連立方程式であり,$ a,b $は正の数である.
この動画を見る
$ x,y $の連立方程式であり,$ a,b $は正の数である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
ax-y=4 \\
x+by=7
\end{array}
\right.
\end{eqnarray}$
の解を$ a $と$ b $を用いて表すと$ x=\Box,y=\Box $である.
大阪星光学院高校過去問
$ x,y $の連立方程式であり,$ a,b $は正の数である.
【解への道筋は…!】連立方程式:お茶の水女子大学附属高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x-\dfrac{a+5}{2}y=-2 \\
2ax+15y=1
\end{array}
\right.
\end{eqnarray}$
$ y=\dfrac{1}{3}$のとき,定数$ a $の値として考えられるものをすべて求めなさい.
お茶の水女子大学附属高等学校過去問
この動画を見る
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x-\dfrac{a+5}{2}y=-2 \\
2ax+15y=1
\end{array}
\right.
\end{eqnarray}$
$ y=\dfrac{1}{3}$のとき,定数$ a $の値として考えられるものをすべて求めなさい.
お茶の水女子大学附属高等学校過去問
二乗を含む連立方程式 本郷高校
単元:
#連立方程式
指導講師:
数学を数楽に
問題文全文(内容文):
$x=?$ $\quad$ $y=?$
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 9y^2 + 4x -28 = 0 \\
x + 3y = 6
\end{array}
\right.
\end{eqnarray}
本郷高等学校
この動画を見る
$x=?$ $\quad$ $y=?$
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 9y^2 + 4x -28 = 0 \\
x + 3y = 6
\end{array}
\right.
\end{eqnarray}
本郷高等学校
気付けば一瞬な連立方程式
単元:
#連立方程式
指導講師:
数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +2z= 2 \\
x + 2y +z= 7 \\
2x + y + z = -1
\end{array}
\right.
\end{eqnarray}
この動画を見る
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +2z= 2 \\
x + 2y +z= 7 \\
2x + y + z = -1
\end{array}
\right.
\end{eqnarray}
【自力で解きたい!】連立方程式:渋谷教育学園幕張高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#渋谷教育学園幕張高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{3x-4y}-\dfrac{4}{4x+3y}=8 \\
\dfrac{1}{3x-4y}+\dfrac{2}{4x+3y}=6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.
渋谷教育幕張高校過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{3x-4y}-\dfrac{4}{4x+3y}=8 \\
\dfrac{1}{3x-4y}+\dfrac{2}{4x+3y}=6
\end{array}
\right.
\end{eqnarray}$
を解きなさい.
渋谷教育幕張高校過去問
【本当に解はあるのか!?】整数:日本大学習志野高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)#日本大学習志野高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3つの自然数$ x,y,z(x \lt y \lt z)$である.
$ x+y+z=20 $
$ xyz=60 $ 満たす.
このとき, $ x=\Box,y=\Box,z=\Box $
日大習志野高校過去問
この動画を見る
3つの自然数$ x,y,z(x \lt y \lt z)$である.
$ x+y+z=20 $
$ xyz=60 $ 満たす.
このとき, $ x=\Box,y=\Box,z=\Box $
日大習志野高校過去問
【中学数学】数学用語チェック絵本 中2の用語”せめて”これだけは覚えよう!!act2まとめ
単元:
#数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#資料の活用#1次関数#平行と合同#確率#三角形と四角形
指導講師:
理数個別チャンネル
問題文全文(内容文):
中2で登場する数学用語の中で、せめてこれだけは覚えてほしいものをピックアップ!act2vol.1~7の方も見てね♪
この動画を見る
中2で登場する数学用語の中で、せめてこれだけは覚えてほしいものをピックアップ!act2vol.1~7の方も見てね♪
【未知なるものは…!】文章題:明治学院高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治学院高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
所持金で$ \color{red}{プリンを8個}$買うと$ \color{red}{220円}$余り,$ \color{red}{10個}$買うと合計金額から$ \color{blue}{1割引き}$になるので$ \color{red}{60円}$余る.
このときの$ \color{red}{所持金}$はいくらか?
明治学院高校過去問
この動画を見る
所持金で$ \color{red}{プリンを8個}$買うと$ \color{red}{220円}$余り,$ \color{red}{10個}$買うと合計金額から$ \color{blue}{1割引き}$になるので$ \color{red}{60円}$余る.
このときの$ \color{red}{所持金}$はいくらか?
明治学院高校過去問
気付けば気持ちいい!!連立方程式 慶應義塾
単元:
#連立方程式
指導講師:
数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 6 \\
6xy = 5
\end{array}
\right.
\end{eqnarray}
慶應義塾高等学校
この動画を見る
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 6 \\
6xy = 5
\end{array}
\right.
\end{eqnarray}
慶應義塾高等学校
【挑戦しよう!】連立方程式:慶応義塾高等学校~全国入試問題解法
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x \gt y $において,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y+xy^2-9xy=120 \\
xy+x+y-9=-22
\end{array}
\right.
\end{eqnarray}$
の解は$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$ または,$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$
慶應義塾高校過去問
この動画を見る
$ x \gt y $において,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y+xy^2-9xy=120 \\
xy+x+y-9=-22
\end{array}
\right.
\end{eqnarray}$
の解は$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$ または,$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\Box \\
y=\Box
\end{array}
\right.
\end{eqnarray}$
慶應義塾高校過去問