微分法と積分法
【数IIB】7分で「6分の1公式」をマスターしよう【一夜漬け】【直前に5点UP】
単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
積分の1/6公式の具体的な使い方がこの動画を見れば7分でマスターできます!
この動画を見る
積分の1/6公式の具体的な使い方がこの動画を見れば7分でマスターできます!
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上で、次の二つの2次関数のグラフについて考える。\\
\\
y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②\\
\\
①、②の2次関数のグラフには次の共通点がある。\\
\\
共通点:・y軸との交点のy座標は\boxed{\ \ ア\ \ } である。\\
・y軸との交点における接線の方程式はy=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ } である。\\
\\
次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が\\
y=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ }となるものは\\
\boxed{\ \ エ\ \ }である。\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪y=3x^2-2x-3 ①y=-3x^2+2x-3 ②y=2x^2+2x-3\\
③y=2x^2-2x+3 ④y=-x^2+2x+3 ⑤y=-x^2-2x+3\\
\\
a,b,cを0でない実数とする。\\
曲線y=ax^2+bx+c上の点(0,\boxed{\ \ オ\ \ })における接線をlとすると、\\
その方程式はy=\boxed{\ \ カ\ \ }\ x+\boxed{\ \ キ\ \ } である。\\
\\
直線lとx軸との交点のx座標は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}である。\\
\\
a,b,cが正の実数であるとき、曲線y=ax^2+bx+cと\\
直線lおよび直線x=\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}で囲まれた図形の\\
面積をSとするとS=\frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }b^{\boxed{ス}}} \ldots③ である。\\
\\
③において、a=1とし、Sの値が一定となるように正の実数b,cの値を変化させる。\\
このとき、bとcの関係を表すグラフの概形は\boxed{\ \ セ\ \ }である。\\
(※\boxed{\ \ セ\ \ }の選択肢は動画参照)
\end{eqnarray}
2022共通テスト数学過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上で、次の二つの2次関数のグラフについて考える。\\
\\
y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②\\
\\
①、②の2次関数のグラフには次の共通点がある。\\
\\
共通点:・y軸との交点のy座標は\boxed{\ \ ア\ \ } である。\\
・y軸との交点における接線の方程式はy=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ } である。\\
\\
次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が\\
y=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ }となるものは\\
\boxed{\ \ エ\ \ }である。\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪y=3x^2-2x-3 ①y=-3x^2+2x-3 ②y=2x^2+2x-3\\
③y=2x^2-2x+3 ④y=-x^2+2x+3 ⑤y=-x^2-2x+3\\
\\
a,b,cを0でない実数とする。\\
曲線y=ax^2+bx+c上の点(0,\boxed{\ \ オ\ \ })における接線をlとすると、\\
その方程式はy=\boxed{\ \ カ\ \ }\ x+\boxed{\ \ キ\ \ } である。\\
\\
直線lとx軸との交点のx座標は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}である。\\
\\
a,b,cが正の実数であるとき、曲線y=ax^2+bx+cと\\
直線lおよび直線x=\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}で囲まれた図形の\\
面積をSとするとS=\frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }b^{\boxed{ス}}} \ldots③ である。\\
\\
③において、a=1とし、Sの値が一定となるように正の実数b,cの値を変化させる。\\
このとき、bとcの関係を表すグラフの概形は\boxed{\ \ セ\ \ }である。\\
(※\boxed{\ \ セ\ \ }の選択肢は動画参照)
\end{eqnarray}
2022共通テスト数学過去問
【ゆっくり丁寧に】数学Ⅱ・微分 3次関数のグラフの書き方
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数のグラフをかけ。
(1)
$y=-2x^3+6x^2+12$
(2)
$y=x^3-9x^2+27x+3$
この動画を見る
次の関数のグラフをかけ。
(1)
$y=-2x^3+6x^2+12$
(2)
$y=x^3-9x^2+27x+3$
【数学Ⅱ/微分】関数の増減(微分・増減表)
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数の増加・減少を調べよ。
(1)
$y=x^3-3x^2-9x+2$
(2)
$y=x^3-3x^2+14x-4$
この動画を見る
次の関数の増加・減少を調べよ。
(1)
$y=x^3-3x^2-9x+2$
(2)
$y=x^3-3x^2+14x-4$
【数学Ⅱ/微分】接線の方程式②
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
点$(-1,-4)$から、曲線$y=x^2-1$に引いた接線の方程式を求めよ。
この動画を見る
点$(-1,-4)$から、曲線$y=x^2-1$に引いた接線の方程式を求めよ。
【数学Ⅱ/微分】接線の方程式①
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の接線の方程式を求めよ。
(1)
曲線$y=x^3-2x^2+x+4$上の$x$座標が2である点における接線
(2)
曲線$y=x^2-3x$について、傾きが$3$である接線
この動画を見る
次の接線の方程式を求めよ。
(1)
曲線$y=x^3-2x^2+x+4$上の$x$座標が2である点における接線
(2)
曲線$y=x^2-3x$について、傾きが$3$である接線
【数学II/微分】導関数の定義
福田のわかった数学〜高校3年生理系107〜変化率(2)水の問題(1)
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 変化率(2) 水の問題(1)\\
y=x^2 をy軸の周りに回転させてできる容器に、\\
毎秒1cm^3の割合で水を入れる。水面の半径が\\
3cmになったときの水面の上昇速度と水面の面積の増加速度を求めよ。\\
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 変化率(2) 水の問題(1)\\
y=x^2 をy軸の周りに回転させてできる容器に、\\
毎秒1cm^3の割合で水を入れる。水面の半径が\\
3cmになったときの水面の上昇速度と水面の面積の増加速度を求めよ。\\
\end{eqnarray}
福田のわかった数学〜高校3年生理系106〜変化率(1)
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 変化率(1)\\
半径が毎秒1cmずつ増加する\\
球がある。半径が3cmとなる\\
瞬間の体積の増加する速さを求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} 変化率(1)\\
半径が毎秒1cmずつ増加する\\
球がある。半径が3cmとなる\\
瞬間の体積の増加する速さを求めよ。
\end{eqnarray}
気を付けないと間違える計算問題
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
この動画を見る
$a\gt 1$である.
$\dfrac{1}{\sqrt{a-2\sqrt{a-1}}}-\dfrac{1}{\sqrt{a+2\sqrt{a-1}}}$
これを解け.
2021一橋大(経済)補足と別解
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋大(経済)過去問
この動画を見る
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋大(経済)過去問
2021一橋(経済)後期
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋(経済)過去問
この動画を見る
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.
一橋(経済)過去問
福田のわかった数学〜高校3年生理系084〜グラフを描こう(6)陰関数のグラフ
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(6)\hspace{160pt}\\
y^2=x^2(x+1) のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(6)\hspace{160pt}\\
y^2=x^2(x+1) のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
福田のわかった数学〜高校3年生理系083〜グラフを描こう(5)ルート混じりのグラフ
単元:
#数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(5)\\
y=x^3\sqrt{1-x^2} のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(5)\\
y=x^3\sqrt{1-x^2} のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数列#漸化式#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} nを0以上の整数とする。定積分\\
I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx\\
について、次の問(1)~(4)に答えよ。ただし、eは自然対数の底である。\\
(1)I_0, I_1の値をそれぞれ求めよ。\\
(2)I_{n+1}をI_nとnを用いて表せ。\\
(3)x \gt 0とする。関数f(x)=\frac{(\log x)^2}{x}\ の増減表を書け。\\
ただし、極値も増減表に記入すること。\\
(4)座標平面上の曲線\ y=\frac{(\log x)^2}{x}, x軸と直線x=eとで囲まれた図形を、\\
x軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}
2021立教大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} nを0以上の整数とする。定積分\\
I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx\\
について、次の問(1)~(4)に答えよ。ただし、eは自然対数の底である。\\
(1)I_0, I_1の値をそれぞれ求めよ。\\
(2)I_{n+1}をI_nとnを用いて表せ。\\
(3)x \gt 0とする。関数f(x)=\frac{(\log x)^2}{x}\ の増減表を書け。\\
ただし、極値も増減表に記入すること。\\
(4)座標平面上の曲線\ y=\frac{(\log x)^2}{x}, x軸と直線x=eとで囲まれた図形を、\\
x軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}
2021立教大学理工学部過去問
福田のわかった数学〜高校3年生理系082〜グラフを描こう(4)ルート混じりのグラフ
単元:
#数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(4)\hspace{180pt}\\
y=4x\sqrt x-3x^2+12x のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(4)\hspace{180pt}\\
y=4x\sqrt x-3x^2+12x のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
福田のわかった数学〜高校2年生061〜対称式と領域(3)
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 対称式と領域(3)\\
実数x,\ yがx^2+xy+y^2=6\ を\\
満たしながら動くとき\\
x^2y+xy^2-x^2-2xy-y^2+x+y\\
の取り得る値の範囲を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 対称式と領域(3)\\
実数x,\ yがx^2+xy+y^2=6\ を\\
満たしながら動くとき\\
x^2y+xy^2-x^2-2xy-y^2+x+y\\
の取り得る値の範囲を求めよ。
\end{eqnarray}
福田の数学〜明治大学2021年全学部統一入試IⅡAB第2問〜2つのグラフの共有点の個数と面積
単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#微分法と積分法#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} a,kを実数とし、xの関数f(x),\ g(x)を次のようにする。\\
f(x)=x^3-ax, g(x)=|x|+k\\
\\
(1)a=4,\ k=0のとき、曲線y=f(x)とy=g(x)は3個の異なる共有点をもつ。\\
それぞれの交点のx座標は-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}である。\\
\\
(2)k=0のとき、曲線y=f(x)とy=g(x)がちょうど2個の異なる共有点をもつ\\
aの範囲は\boxed{\ \ ウ\ \ }かつ\boxed{\ \ エ\ \ }である。\\
\\
(3)a=4のとき、曲線y=f(x)とy=g(x)が3個の異なる共有点をもつkの範囲は\\
-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }である。\\
\\
(4)a=4,\ k=\boxed{\ \ コ\ \ }のとき、曲線y=f(x)とy=g(x)の共有点のx座標は-\boxed{\ \ サ\ \ }\\
と\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}であり、y=f(x)とy=g(x)で囲まれる図形の面積は\\
\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\ \ ウ\ \ }の解答群\\
⓪-2 \lt a ①-2 \leqq a ②-1 \lt a ③-1 \leqq a ④0 \lt a\\
⑤0 \leqq a ⑥1 \lt a ⑦1 \leqq a ⑧2 \lt a ⑨2 \leqq a \\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪a \lt -2 ①a \leqq -2 ②a \lt -1 ③a \leqq -1 ④a \lt 0\\
⑤a \leqq 0 ⑥a \lt 1 ⑦a \leqq 1 ⑧a \lt 2 ⑨a \leqq 2 \\
\end{eqnarray}
2021明治大学全統過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} a,kを実数とし、xの関数f(x),\ g(x)を次のようにする。\\
f(x)=x^3-ax, g(x)=|x|+k\\
\\
(1)a=4,\ k=0のとき、曲線y=f(x)とy=g(x)は3個の異なる共有点をもつ。\\
それぞれの交点のx座標は-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}である。\\
\\
(2)k=0のとき、曲線y=f(x)とy=g(x)がちょうど2個の異なる共有点をもつ\\
aの範囲は\boxed{\ \ ウ\ \ }かつ\boxed{\ \ エ\ \ }である。\\
\\
(3)a=4のとき、曲線y=f(x)とy=g(x)が3個の異なる共有点をもつkの範囲は\\
-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }である。\\
\\
(4)a=4,\ k=\boxed{\ \ コ\ \ }のとき、曲線y=f(x)とy=g(x)の共有点のx座標は-\boxed{\ \ サ\ \ }\\
と\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}であり、y=f(x)とy=g(x)で囲まれる図形の面積は\\
\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\ \ ウ\ \ }の解答群\\
⓪-2 \lt a ①-2 \leqq a ②-1 \lt a ③-1 \leqq a ④0 \lt a\\
⑤0 \leqq a ⑥1 \lt a ⑦1 \leqq a ⑧2 \lt a ⑨2 \leqq a \\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪a \lt -2 ①a \leqq -2 ②a \lt -1 ③a \leqq -1 ④a \lt 0\\
⑤a \leqq 0 ⑥a \lt 1 ⑦a \leqq 1 ⑧a \lt 2 ⑨a \leqq 2 \\
\end{eqnarray}
2021明治大学全統過去問
【数Ⅱ】積分法:2次関数の面積を半分にする1次関数
単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線y=-x(x-6)とx軸で囲まれた図形の面積を、直線y=mxが2等分するとき、定数mの値を求めよう。
この動画を見る
放物線y=-x(x-6)とx軸で囲まれた図形の面積を、直線y=mxが2等分するとき、定数mの値を求めよう。
福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数\\
を順に\alpha,\beta,\gammaとする。3次関数\\
f(x)=(x-\alpha)(x-\beta)(x-\gamma)\\
を考える。\\
(1)関数y=f(x)が極値をとらない確率は\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}である。\\
(2)関数y=f(x)が極大値をとるとき、その極大値の取り得る値のうち最小のもの\\
は\boxed{\ \ ニ\ \ }で、最大のものは\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}である。\\
(3)関数y=f(x)が極大値\boxed{\ \ ニ\ \ }をとる確率は\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}である。\\
(4)関数y=f(x)が極大値\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}を取る確率は\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}である。
\end{eqnarray}
2021上智大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数\\
を順に\alpha,\beta,\gammaとする。3次関数\\
f(x)=(x-\alpha)(x-\beta)(x-\gamma)\\
を考える。\\
(1)関数y=f(x)が極値をとらない確率は\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}である。\\
(2)関数y=f(x)が極大値をとるとき、その極大値の取り得る値のうち最小のもの\\
は\boxed{\ \ ニ\ \ }で、最大のものは\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}である。\\
(3)関数y=f(x)が極大値\boxed{\ \ ニ\ \ }をとる確率は\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}である。\\
(4)関数y=f(x)が極大値\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}を取る確率は\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}である。
\end{eqnarray}
2021上智大学文系過去問
福田の数学〜上智大学2021年TEAP利用文系第2問〜放物線の接線と面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} xy平面において、放物線C:y=x^2と、互いに直交するCの2つの接線l,mを\\
考える。\\
(1)lが点(2,\ 4)を通るとき、mの方程式は\\
y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
であり、lとmの交点の座標は\\
(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})\\
である。\\
\\
(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}である。
\end{eqnarray}
2021上智大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} xy平面において、放物線C:y=x^2と、互いに直交するCの2つの接線l,mを\\
考える。\\
(1)lが点(2,\ 4)を通るとき、mの方程式は\\
y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
であり、lとmの交点の座標は\\
(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})\\
である。\\
\\
(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}である。
\end{eqnarray}
2021上智大学文系過去問
福田の数学〜中央大学2021年経済学部第1問(6)〜定積分で表された関数
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)\ 次の2つの等式を満たす関数f(x)を求めよ。\\
f(0)=-\frac{1}{3}, f'(x)=2x+\int_0^1f(t)dt\\
\end{eqnarray}
2021中央大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (6)\ 次の2つの等式を満たす関数f(x)を求めよ。\\
f(0)=-\frac{1}{3}, f'(x)=2x+\int_0^1f(t)dt\\
\end{eqnarray}
2021中央大学経済学部過去問
東大 大島さんと数学 球の体積
福田の数学〜中央大学2021年理工学部第1問〜斜回転
単元:
#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 放物線C:y=x^2上の点(a,\ a^2) (a \gt 0)における法線lの方程式をy=f(x)\\
とおくと、f(x)=\boxed{\ \ ア\ \ }となる。またCとlの交点のうちPと異なる方の点Qを\\
求めると、Q(\boxed{\ \ イ\ \ },\ \boxed{\ \ イ\ \ }^2)となる。以下、Cとlで囲まれた部分をDとし、\\
Dをlの周りに1回転して得られる回転体の体積V(a)を求める。Dに含まれるl上\\
の点をR(t,\ f(t)) (\boxed{\ \ イ\ \ } \leqq t \leqq a)とおく。Rを通りlに垂直な直線は\\
y=2a(x-t)+f(t)で与えられる。この直線とy=x^2の2つの交点のうち\\
Dに含まれる方の点Sのx座標はx=a-\boxed{\ \ ウ\ \ }\sqrt{a-t}\ となる。このとき\\
線分RSの長さr=g(t)はg(t)=\boxed{\ \ エ\ \ }(t-a+\boxed{\ \ ウ\ \ }\sqrt{a-t})となる。\\
線分QRの長さs=h(t)はh(t)=\boxed{\ \ オ\ \ }(t-\boxed{\ \ イ\ \ })で与えられるので、\\
V(a)=\pi\int_0^{h(a)}r^2ds=\pi\int_{\boxed{イ}}^a\left\{g(t)\right\}^2h'(t)dt\\
=\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_{\boxed{イ}}^a(a-t)(-\sqrt{a-t}+\boxed{\ \ ウ\ \ })^2dt\\
となる。ここでu=\sqrt{a-t}とおいて置換積分を行えば\\
V(a)=2\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_0^{\boxed{ウ}}\left\{u^5-2\boxed{\ \ ウ\ \ }u^4+(\boxed{\ \ ウ\ \ })^2u^3\right\}du=\boxed{\ \ カ\ \ }\\
が求まる。さらに、a \gt 0の範囲でaを動かすとき、\lim_{a \to +0}V(a)=\lim_{a \to \infty}V(a)=\infty\\
であり、V(a)を最小にするaの値はa=\boxed{\ \ キ\ \ }である。\\
\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
ⓐ-\frac{2}{a}(x-a)+a^2 ⓑ-\frac{1}{a}(x-a)+a^2 ⓒ-\frac{1}{2a}(x-a)+a^2 ⓓ-2a(x-a)+a^2\\
\\
\\
\boxed{\ \ イ\ \ }~\ \boxed{\ \ オ\ \ }\ の解答群\\
ⓐ-\frac{a^2-1}{a} ⓑ-\frac{2a^2-1}{2a} ⓒ-\frac{a^2+1}{a} ⓓ-\frac{2a^2+1}{2a}\\
ⓔ\frac{\sqrt{a^2+4}}{2} ⓕ\sqrt{a^2+1} ⓖ\sqrt{4a^2+1} ⓗ2a\\
ⓘ\frac{\sqrt{4a^2+1}}{2a} ⓙ\frac{\sqrt{a^2+4}}{a} ⓚ\frac{\sqrt{a^2+1}}{a} ⓛ\frac{\sqrt{a^2+1}}{2a}\\
ⓜ\sqrt{\frac{2a^2+1}{2a}} ⓝ\sqrt{\frac{4a^2+1}{2a}} ⓞ\sqrt{\frac{2a^2+1}{a}} ⓟ\sqrt{\frac{4a^2+1}{a}}\\
\\
\\
\boxed{\ \ カ\ \ }\ の解答群\\
ⓐ\frac{(2a^2+1)^3(a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓑ\frac{(2a^2+1)^{\frac{9}{2}}}{120a^4}\ \pi ⓒ\frac{(2a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓓ\frac{(2a^2+1)^3(4a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓔ\frac{(4a^2+1)^{\frac{9}{2}}}{480a^4}\ \pi ⓕ\frac{(4a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓖ\frac{(a^2+1)^2(4a^2+1)^2}{120a^{\frac{7}{2}}}\ \pi ⓗ\frac{(4a^2+1)^4}{480\sqrt2a^{\frac{7}{2}}}\ \pi ⓘ\frac{(4a^2+1)^4}{120\sqrt2a^{\frac{7}{2}}}\ \pi\\
\\
\\
\boxed{\ \ キ\ \ }\ の解答群\\
ⓐ\frac{1}{\sqrt5} ⓑ\frac{1}{\sqrt2} ⓒ1 ⓓ\sqrt2 ⓔ\frac{2}{\sqrt5} ⓕ4
\end{eqnarray}
2021中央大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} 放物線C:y=x^2上の点(a,\ a^2) (a \gt 0)における法線lの方程式をy=f(x)\\
とおくと、f(x)=\boxed{\ \ ア\ \ }となる。またCとlの交点のうちPと異なる方の点Qを\\
求めると、Q(\boxed{\ \ イ\ \ },\ \boxed{\ \ イ\ \ }^2)となる。以下、Cとlで囲まれた部分をDとし、\\
Dをlの周りに1回転して得られる回転体の体積V(a)を求める。Dに含まれるl上\\
の点をR(t,\ f(t)) (\boxed{\ \ イ\ \ } \leqq t \leqq a)とおく。Rを通りlに垂直な直線は\\
y=2a(x-t)+f(t)で与えられる。この直線とy=x^2の2つの交点のうち\\
Dに含まれる方の点Sのx座標はx=a-\boxed{\ \ ウ\ \ }\sqrt{a-t}\ となる。このとき\\
線分RSの長さr=g(t)はg(t)=\boxed{\ \ エ\ \ }(t-a+\boxed{\ \ ウ\ \ }\sqrt{a-t})となる。\\
線分QRの長さs=h(t)はh(t)=\boxed{\ \ オ\ \ }(t-\boxed{\ \ イ\ \ })で与えられるので、\\
V(a)=\pi\int_0^{h(a)}r^2ds=\pi\int_{\boxed{イ}}^a\left\{g(t)\right\}^2h'(t)dt\\
=\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_{\boxed{イ}}^a(a-t)(-\sqrt{a-t}+\boxed{\ \ ウ\ \ })^2dt\\
となる。ここでu=\sqrt{a-t}とおいて置換積分を行えば\\
V(a)=2\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_0^{\boxed{ウ}}\left\{u^5-2\boxed{\ \ ウ\ \ }u^4+(\boxed{\ \ ウ\ \ })^2u^3\right\}du=\boxed{\ \ カ\ \ }\\
が求まる。さらに、a \gt 0の範囲でaを動かすとき、\lim_{a \to +0}V(a)=\lim_{a \to \infty}V(a)=\infty\\
であり、V(a)を最小にするaの値はa=\boxed{\ \ キ\ \ }である。\\
\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
ⓐ-\frac{2}{a}(x-a)+a^2 ⓑ-\frac{1}{a}(x-a)+a^2 ⓒ-\frac{1}{2a}(x-a)+a^2 ⓓ-2a(x-a)+a^2\\
\\
\\
\boxed{\ \ イ\ \ }~\ \boxed{\ \ オ\ \ }\ の解答群\\
ⓐ-\frac{a^2-1}{a} ⓑ-\frac{2a^2-1}{2a} ⓒ-\frac{a^2+1}{a} ⓓ-\frac{2a^2+1}{2a}\\
ⓔ\frac{\sqrt{a^2+4}}{2} ⓕ\sqrt{a^2+1} ⓖ\sqrt{4a^2+1} ⓗ2a\\
ⓘ\frac{\sqrt{4a^2+1}}{2a} ⓙ\frac{\sqrt{a^2+4}}{a} ⓚ\frac{\sqrt{a^2+1}}{a} ⓛ\frac{\sqrt{a^2+1}}{2a}\\
ⓜ\sqrt{\frac{2a^2+1}{2a}} ⓝ\sqrt{\frac{4a^2+1}{2a}} ⓞ\sqrt{\frac{2a^2+1}{a}} ⓟ\sqrt{\frac{4a^2+1}{a}}\\
\\
\\
\boxed{\ \ カ\ \ }\ の解答群\\
ⓐ\frac{(2a^2+1)^3(a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓑ\frac{(2a^2+1)^{\frac{9}{2}}}{120a^4}\ \pi ⓒ\frac{(2a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓓ\frac{(2a^2+1)^3(4a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓔ\frac{(4a^2+1)^{\frac{9}{2}}}{480a^4}\ \pi ⓕ\frac{(4a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓖ\frac{(a^2+1)^2(4a^2+1)^2}{120a^{\frac{7}{2}}}\ \pi ⓗ\frac{(4a^2+1)^4}{480\sqrt2a^{\frac{7}{2}}}\ \pi ⓘ\frac{(4a^2+1)^4}{120\sqrt2a^{\frac{7}{2}}}\ \pi\\
\\
\\
\boxed{\ \ キ\ \ }\ の解答群\\
ⓐ\frac{1}{\sqrt5} ⓑ\frac{1}{\sqrt2} ⓒ1 ⓓ\sqrt2 ⓔ\frac{2}{\sqrt5} ⓕ4
\end{eqnarray}
2021中央大学理工学部過去問
福田の数学〜慶應義塾大学2021年看護医療学部第5問〜定積分で表された関数
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} dを実数の定数、f(t)を2次関数として、次の関数F(x)を考える。\\
F(x)=\int_d^xf(t)dt\\
(1)F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }\ である。\\
(2)F(x)がx=1で極大値5、x=2で極小値4をとるとき、\\
f(t)およびdを求めなさい。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}} dを実数の定数、f(t)を2次関数として、次の関数F(x)を考える。\\
F(x)=\int_d^xf(t)dt\\
(1)F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }\ である。\\
(2)F(x)がx=1で極大値5、x=2で極小値4をとるとき、\\
f(t)およびdを求めなさい。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
積分基礎 西南学院大
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^2+1$と$g(n)=-x^2+6x-5$と$f(x),g(n)$の共通接線で囲まれる面積を求めよ.
2021西南学院大過去問
この動画を見る
$f(x)=-x^2+1$と$g(n)=-x^2+6x-5$と$f(x),g(n)$の共通接線で囲まれる面積を求めよ.
2021西南学院大過去問
【基本から解説】数Ⅲ・微分 導関数の定義に従って微分する問題
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を、導関数の定義に従って微分せよ。
(1)
$y=\displaystyle \frac{1}{x+2}$
(2)
$y=\sqrt{ 3x }$
この動画を見る
次の関数を、導関数の定義に従って微分せよ。
(1)
$y=\displaystyle \frac{1}{x+2}$
(2)
$y=\sqrt{ 3x }$
福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
福田の数学〜慶應義塾大学2021年薬学部第1問(2)〜解の差が1の2次方程式
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (2)xの関数f(x)=x^2+ax+bがある。方程式f(x)=0の2つの実数解の差が\\
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が\frac{13}{2}であるとき、\\
aの値は\ \boxed{\ \ イ\ \ }、bの値は\ \boxed{\ \ ウ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (2)xの関数f(x)=x^2+ax+bがある。方程式f(x)=0の2つの実数解の差が\\
1であり、xの値が2から5まで変わるときのf(x)の平均変化率が\frac{13}{2}であるとき、\\
aの値は\ \boxed{\ \ イ\ \ }、bの値は\ \boxed{\ \ ウ\ \ }\ である。
\end{eqnarray}
2021慶應義塾大学薬学部過去問
積分の基本
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-7x^2+14x-8$と$x$軸とで囲まれる2つの部分の面積の和を求めよ.
この動画を見る
$f(x)=x^3-7x^2+14x-8$と$x$軸とで囲まれる2つの部分の面積の和を求めよ.