数列とその和(等差・等比・階差・Σ) - 質問解決D.B.(データベース) - Page 3

数列とその和(等差・等比・階差・Σ)

慶應義塾大(経済)数列の最大値

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2011慶應義塾大学過去問題
n=1,2,・・・100
an=n3n100Cn
anを最大にするnの値
この動画を見る 

【高校数学】等差数列×等比数列の和~どこよりも丁寧に分かりやすく~ 3-12【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等差×等比

S=11+22++32²+n2n1

を求めよ
この動画を見る 

等比数列の和を1から解説

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
3+32+33++37 (38=6561)
この動画を見る 

福田の数学〜神戸大学2023年理系第3問〜確率の基本性質と数え上げ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3 nを2以上の整数とする。袋の中には1から2nまでの整数が1つずつ書いてある2n枚のカードが入っている。以下の問いに答えよ。
(1)この袋から同時に2枚のカードを取り出したとき、そのカードに書かれている数の和が偶数である確率を求めよ。
(2)この袋から同時に3枚のカードを取り出したとき、そのカードに書かれている数の和が偶数である確率を求めよ。
(3)この袋から同時に2枚のカードを取り出したとき、そのカードに書かれている数の和が2n+1以上である確率を求めよ。

2023神戸大学理系過去問
この動画を見る 

東京医科大 見掛け倒しな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#東京医科大学#東京医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
1008の正の約数n個を大きい順に並べた数列を
a1,a2,anとし、S(x)S(x)=k=1nakxとする。
S(0)S(1)S(1)S(2)S(1)
この動画を見る 

【短時間でマスター!!】等差×等比数列の型の和の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
等差×等比数列の型の和の求め方を解説します。
S=1+2×2+3×23++n2n1を求めよ。
この動画を見る 

福田の数学〜一橋大学2023年文系第5問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
5 A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員がn回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率PA, PB, PCをそれぞれ求めよ。

2023一橋大学文系過去問
この動画を見る 

産業医科大 区分求積法を使わなくても出せるよ

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
limn14+24+34++n4n5
これを求めよ。

産業医科大過去問
この動画を見る 

福田の数学〜一橋大学2023年文系第4問〜群数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
4 xy平面上で、x座標とy座標がともに正の整数であるような各点に、下の図のような番号をつける。(※動画参照)点(m, n)につけた番号をf(m, n)とする。
たとえば、f(1,1)=1,f(3,4)=19 である。
(1)f(m,n)+f(m+1,n+1)=2f(m,n+1)
が成り立つことを示せ。
(2)f(m,n)+f(m+1,n)+f(m,n+1)+f(m+1,n+1)=2023
となるような整数の組(m, n)を求めよ。

2023一橋大学文系過去問
この動画を見る 

この答えあっているのか?指数関数と等差数列 自治医科大

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
2x+2,2x,24がこの順で等差数列をなすとき、x=?
(自治医科大学(改))
この動画を見る 

福田の数学〜東北大学2023年理系第3問〜漸化式と数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3 sを実数とし、数列{an}
a1=s, (n+2)an+1=nan+2 (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)anをnとsを用いて表せ。
(2)ある正の整数mに対して、n=1man=0が成り立つとする。sをmを用いて表せ。

2023東北大学理系過去問
この動画を見る 

【短時間でマスター!!】和と一般項の問題の求め方を解説!(数列)〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
数学2B
和と一般項
数列{an}の初項から第n項までの和SnSn=3n(n+5)で表されるとき、一般項anを求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第2問(3)〜推定して数学的帰納法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
2 (3) 次の条件によって定められる数列{an}がある。
a1=1, an+1=an2+1 (n=1,2,3,...)
(i)a2=    , a3=    であり、一般項anを推定するとan=    である。
(ii)一般項anan=    であることの数学的帰納法による証明を述べよ。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(5)〜整式の割り算の余り

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1 (5)整式P(x)を
P(x)=n=120nxn=20x20+19x19+18x18+...+2x2+x
と定める。このとき、P(x)をx-1で割った時の余りは    である。
また、P(x)をx2-1で割った時の余りは    である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

大学入試問題#520「これは綺麗や~~」 東北大学(2023) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
a1=S:実数
(n+2)an+1=n an+2

(1)
anを求めよ

(2)
n=1man=0のときSmで表せ

出典:2023年東北大学 入試問題
この動画を見る 

【数B】第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24である等比数列について、第1項から第40項までの和を求めよ
この動画を見る 

【短時間でマスター!!】階差数列の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
数学2B
階差数列
5,11,23,41,65,95,の一般項は?
この動画を見る 

【数B】特殊な数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の数列の一般項を求めなさい。
a11
a22+3+2
a33+4+5+4+3
a44+5+6+7+6+5+4
この動画を見る 

【0≦θ≦πを問題文に追加】微分すると大変かも・・・ By ~らん~

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
m,n:自然数
m2
f(θ)=sin nθcos nθ+mの最大値をα(m,n)とする
m=2{α(m,n)}2を求めよ
この動画を見る 

【わかりやすく解説】和の記号Σ(シグマ)(数学B/数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の和を求めよ。
(4)k=1n(k2+3k+2)
この動画を見る 

【数B】数列・等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
この動画を見る 

【数B】数列:等比数列の和 公比が4、第10項が4096である等比数列の初項を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1項から第10項までの和が4、第1項から第20項までの和が24のとき、第1項から第40項までの和を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 自然数nに対し、定積分In=01xnx2+1dxを考える。このとき、次の問いに答えよ。
(1)In+In+2=1n+1を示せ。
(2)0≦In+1In1n+1を示せ。
(3)limnnIn を求めよ。
(4)Sn=k=1n(1)k12k とする。このとき(1), (2)を用いてlimnSn を求めよ。

2018名古屋大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題076〜東京大学2018年度理系第2問〜数列の項の大小とユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
第2問
数列a1, a2,
an=2n+1Cnn! (n=1,2,...)
で定める。
(1)n≧2とする。anan1を既約分数qnpnとして表したときの分母pn≧1と分子qnを求めよ。
(2)anが整数となるn≧1をすべて求めよ。

2018東京大学理系過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第4問数列〜複利計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#大学入試解答速報#数学#共通テスト#数B
指導講師: 福田次郎
問題文全文(内容文):
第4問
花子さんは、毎年の初めに預金口座に一定額の入金をすることにした。この入金を始める前における花子さんの預金は10万円である。ここで、預金とは預金口座にあるお金の額のことである。預金には年利1%で利息がつき、ある年の初めの預金がx万円であれば、その年の終わりには預金は1.01x万円となる。次の年の初めには1.01x万円に入金額を加えたものが預金となる。
毎年の初めの入金額をp万円とし、n年目の初めの預金をan万円とおく。ただし、p>0とし、nは自然数とする。
例えば、a1=10+p,a2=1.01(10+p)+pである。
(1)anを求めるために二つの方針で考える。
方針1
n年目の初めの預金と(n+1)年目の初めの預金との関係に着目して考える。
3年目の初めの預金a3万円について、a3=    である。全ての自然数nについて
an+1=    an+    
が成り立つ。これは
an+1+    =    (an+    )
と変形でき、anを求めることができる。

    の解答群
⓪1.01{1.01(10+p)+p} ①1.01{1.01(10+p)+1.01p} 
②1.01{1.01(10+p)+p}+p ③1.01{1.01(10+p)+p}+1.01p 
④1.01(10+p)+1.01p ⑤1.01(10+1.01p)+1.01p

        の解答群(同じものを繰り返し選んでもよい。)
⓪1.01 ①1.01n1 ②1.01n 
③p ④100p ⑤np
⑥100np ⑦1.01n1×100p ⑧1.01n×100p 
方針2
もともと預金口座にあった10万円と毎年の初めに入金したp万円について、n年目の初めにそれぞれがいくらになるかに着目して考える。
もともと預金口座にあった10万円は、2年目の初めには10×1.01万円になり、3年目の初めには10×1.012万円になる。同様に考えるとn年目の初めには10×1.01n1万円になる。
・1年目の初めに入金したp万円は、n年目の初めにはp×1.01万円になる。
・2年目の初めに入金したp万円は、n年目の初めにはp×1.01万円になる。
・n年目の初めに入金したp万円は、n年目の初めにはp万円のままである。
これより
an=10×1.01n1+p×1.01+p×1.01+...+p
=10×1.01n1+pk=1n1.01
となることがわかる。ここで、k=1n1.01=    となるので、anを求めることができる。
    ,     の解答群(同じものを繰り返し選んでもよい。)
⓪n+1 ①n ②n-1 ③n-2
    の解答群
⓪k+1 ①k ②k-1 ③k-2
    の解答群
⓪100×1.01n ①100(1.01n-1) 
②100(1.01n11) ③n+1.01n1-1 
④0.01(101n-1) ⑤n×1.01n12
(2)花子さんは、10年目の終わりの預金が30万円以上になるための入金額について考えた。
10年目の終わりの預金が30万円以上であることを不等式を用いて表すと
    ≧30となる。この不等式をpについて解くと
p≧        ×1.0110101(1.01101)
となる。したがって、毎年の初めの入金額が例えば18000円であれば、10年目の終わりの預金が30万円以上になることがわかる。
    の解答群
a10 ①a10+p ②a10-p 
③1.01a10 ④1.01a10+p ⑤1.01a10-p
(3)1年目の入金を始める前における花子さんの預金が10万円ではなく、13万円の場合を考える。すべての自然数nに対して、この場合のn年目の初めの預金はan万円よりも    万円多い。なお、年利は1%であり、毎年の初めの入金額はp万円のままである。
    の解答群
⓪3 ①13 ②3(n-1) 
③3n ④13(n-1) ⑤13n 
3n ⑦3+1.01(n-1) ⑧3×1.01n1 
⑨3×1.01n ⓐ13×1.01n1 ⓑ13×1.01n 

2023共通テスト過去問
この動画を見る 

近畿大(医)やっぱり出た2023年問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,nは整数(n2)aから始まる連続n個の整数の和が2023となる(a,n)の組は,
(1)全部で何通りか?
(2)a,nともに奇数は何通りか?

近畿大(医)過去問
この動画を見る 

階乗に関する方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
18!+19!=x10!
x=?
この動画を見る 

福田の1.5倍速演習〜合格する重要問題072〜上智大学2019年度理工学部第3問〜ガウス記号で定義された数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3 α=log23とし、自然数nに対して
an=[nα], bn=[nαα1]
とする。ただし、実数xに対して[x]はxを超えない最大の整数を表す。
(1)a5=    である。
(2)b3=kとおくと、不等式3k+c2k1<3k+1+c2k+1が整数c=    で成り立ち、
b3=    であることがわかる。
(3)an 10を満たす自然数nの個数は    である。
(4)bn 10を満たす自然数nの個数は    である。
(5)an 50を満たす自然数nの個数をsとし、bn 50を満たす自然数nの個数をtとする。このとき、s+t=    である。

2019上智大学理工学部過去問
この動画を見る 

【数列】超基本的な問題です!解けますか?【甲南大学】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
9を分母とする正の既約分数で,100より小さいものの総和を求めよ。

甲南大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#千葉大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
11 数列{an}を次の条件によって定める。
a1=2,  an+1=1+11k=1n1ak (n=1,2,3,)
(1) a5を求めよ。
(2) an+1anの式で表せ。
(3) 無限級数k=11akが収束することを示し、その和を求めよ。

2017千葉大学理系過去問
この動画を見る 
PAGE TOP preload imagepreload image