数列 - 質問解決D.B.(データベース) - Page 20

数列

同志社 数列の和 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n=1,2,3…$
$a_{n}=\displaystyle \frac{4N+3}{n(n+1)(n+2)}=$
初項から第$n$項までの和を求めよ

出典:同志社大学 過去問
この動画を見る 

高知大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学 過去問

初項$a_1=4$、$(2n+2)a_n-na_{(n+1)}-3n-6$($n=1,2,3,・・・$)であるとき次の問いに答えよ。

(1)一般項$a_n$を求めよ

(2)$\displaystyle \sum_{k=1}^n a_k$を求めよ
この動画を見る 

香川大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#香川大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
94年香川大学過去問

$a_1=1$,$a_2=3$

$a_{n+2}=a_{n+1}^2a_{n}^3$

数列{$a_{n}$}の一般項を求めよ
この動画を見る 

鳥取大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人鳥取大学

$a_1=1,$$a_2=2$
$a_n$$_+$$_2$$a_{n+2}a_{n}=2(a_{n+1})^2$

$(1)$一般項$a_n$
$(2)$初項から第$n$項までの積

この動画を見る 

神戸大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93神戸大学過去問題
$a_1=0$
$a_{n+1}=3a_n+2^n-1$
(1)$b_n=\frac{a_n}{3^{n-1}}$
(2)一般項を求めよ
この動画を見る 

信州大 漸化式 ちょいと一工夫 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93信州大学過去問題
$a_1=\frac{1}{2}$ $a_{n+1}=a_n(2-a_n)$
一般項を求めよ。n自然数
この動画を見る 

北海道教育大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#北海道教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91北海道教育大学過去問題
$a_1=b_1=1$ n自然数
$a_{n+1}=a_n+b_n$
$b_{n+1}=4a_n+b_n$
(1){ $a_n+kb_n$ }が等比数列となるようなkを求めよ。
(2)$a_n,b_n$の一般項
この動画を見る 

千葉大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
90千葉大学過去問題
$a_1=1$
$3(a_1+a_2+\cdots +a_n)=(n+2)a_n$
(1)一般項$a_n$を求めよ。
(2)$\displaystyle\sum_{k=1}^n \frac{1}{a_k}$
この動画を見る 

室蘭工業大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'17室蘭工業大学過去問題
$a_1=0,a_2=2$
$a_{n+2}=8(n+2)a_{n+1}-7(n^2+3n+2)a_n$
(1)$b_n=\frac{a_n}{n!}$として$b_n$を求めよ
(2)$a_n$を求めよ
この動画を見る 

【数学】数学的に全人類ハゲなんじゃね?~定義の大切さ~

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
数学的帰納法についての説明動画です
この動画を見る 

群馬大・津田塾大 数列の和・積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B#津田塾大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$a_k= \frac{(3k+1)(3k+2)}{3k(k+1)}$ (k自然数)
$\displaystyle\sum_{k=1}^n a_k$をnの式で

津田塾大学過去問題
$C:y=x^2-x-4|x-1|$と直線lは2点で接する。
Cとlで囲まれた面積
この動画を見る 

漸化式 初級から中級への橋渡し 1問を3通りの解法で Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の漸化式、3通りの解法を考えて下さい。
$a_1=1 \quad$ $a_{n+1}=\frac{1}{2}a_n+\frac{1}{3^n}$
特性方程式
$a_{n+1}=α a_n+β \quad$ $x=αx+β$
$a_{n+2}=αa_{n+1}+β a_n=0 \quad$ $x^2+αx+β=0$
この動画を見る 

大分大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
大分大学過去問題
$a_1=\frac{1}{2},a_{n+1}=a_n+\frac{2n+1}{2^{n+1}}$
一般項を求めよ。
この動画を見る 

広島県立 特殊な漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#県立広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島県立大学過去問題
各項が正の数列{$a_n$}
初項~第n項の和を$S_n$
$a_1^3+a_2^3+a_3^3+\cdots+a_n^3=2S_n^2$が成り立つ
(1)$a_n^2+2a_n=4S_n$が成り立つことを示せ。
(2)一般項$a_n$と$S_n$を求めよ。
この動画を見る 

北海道大 等比複素数列 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
数列{$Z_n$}は初項48、公比$\frac{1}{4}(\sqrt{6}+\sqrt{2}i)$の等比複素数列である。
この数列の項のうち実数のみの項を並べた数列を{$a_n$}
(1)$Z_4$
(2)$a_3$
(3)$\displaystyle\sum_{n=1}^\infty a_n$
この動画を見る 

京都大学 確率 数列 融合問題 高校数学 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2005京都大学過去問題
1~nまでの番号のついてn枚($n \geqq 3$,自然数)から3枚取り出して小さい順に並べたときに等差数列になる確率を求めよ.
この動画を見る 

九州大 Σの公式証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010九州大学過去問題
以下の問いに答えよ。証明
(1)和$1+2+3+\cdots+n$をnの多項式で表せ
(2)和$1^2+2^2+3^2+\cdots+n^2$をnの多項式で表せ
(3)和$1^3+2^3+3^3+\cdots+n^3$をnの多項式で表せ
この動画を見る 

旭川医大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
旭川医科大学過去問題
数列{$a_n$},{$b_n$}
$b_n=3a_{n+1}-2a_n$と定義
{$b_n$}は初項b$(\neq 0)$,公比rの等比数列
(1)$b=r=2 , a_1=\frac{1}{2}$のとき{$a_n$}の一般項
(2){$a_n$}が等比数列となるための必要十分条件を$b,r,a_1$を用いて表せ。
この動画を見る 

東京理科 分数型漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京理科大学過去問題
$a_1=3,\quad a_{n+1}= \frac{3a_n+2}{a_n+2}$
数列{$a_n$}の一般項を求めよ。
この動画を見る 

広島大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$9a_{n+1}=a_n+\frac{4}{3^n},a_1=-30$
一般項を求めよ。
この動画を見る 

福井(医) 複雑な漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
この動画を見る 

早稲田 群数列の和 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
k自然数 $a_k$は$\sqrt k$にもっとも近い整数
(例)$a_5=2,a_8=3,a_{20}=4$
(1)$\displaystyle\sum_{k=1}^{12}a_k=a_1+a_2+\cdots+a_{12}$
(2)$\displaystyle\sum_{k=1}^{1998}a_k=a_1+a_2+\cdots+a_{1998}$
この動画を見る 

秋田大(医)数列の和 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$\displaystyle\sum_{k=1}^n \frac{1}{k}(a_k+\frac{1}{k+1})=2^n+1-\frac{1}{n+1}$
(1)数列{$a_n$}の一般項をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^na_k$を求めよ。
この動画を見る 

横浜国大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
P素数、n自然数
$P^n$を分母とする既約分数で、0より大きく、1より小さいものの総和を$S_n$
$S_1,S_2,S_3$
$S_n$を求めよ。
この動画を見る 

福田の一夜漬け数学〜確率漸化式(4)〜名古屋市立大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B$の2人がサイコロを使って次のようなルールでゲームを行う。
先に1を出した方を勝ちとして終了する。
$(\textrm{i})A$が1回目にサイコロを投げる
$(\textrm{ii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iv})B$がサイコロを投げて1,2,3以外が出たときは、次の回はAがサイコロを投げる。
$(\textrm{v})B$がサイコロを投げて2か3が出たときは、次の回もBがサイコロを投げる。

(1)$k$回目にAがサイコロを投げる確率を$P_k,B$が投げる確率を$Q_k$とする。
$P_{k+1}$を$P_k$と$Q_k$を用いて表せ。

(2)k回目に$A$がサイコロを投げて勝つ確率を$R_k$とする。$R_k$を$k$を用いて表せ。
この動画を見る 

福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
この動画を見る 

福田の一夜漬け数学〜確率漸化式(2)〜推移図の作り方のコツ(受験編)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 正三角形ABCの頂点$A$に小石が置いてある。1秒ごとにこの小石は
隣の頂点のどちらかに等確率で移動する。$n$秒後にこの小石が頂点$A$
にある確率を$p_n$とするとき、$p_n$を求めよ。
この動画を見る 

福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。

(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る 

東邦 横市(医)慶應 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
東邦大学過去問題
$2log_5x+log_5y=log_5(x^2+y+59)$を満たす整数x,y

横浜市立大学過去問題
$\displaystyle\sum_{k=1}^{2n}(-1)^{k-1}k^2$

慶応義塾大学過去問題
$x+y+z=28$を満たす非負整数の組(x,y,z)のうちZが偶数となる場合の個数
この動画を見る 

秋田大 慶応大 3次方程式 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数列とその和(等差・等比・階差・Σ)#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#秋田大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$2x^3-3x^2+ax-1=0$の1つの解は$x=\frac{1}{2}$,他の解をα,βとしたとき、$α^{30}+β^{30}$の値

慶応義塾大学過去問題
$\displaystyle\sum_{k=1}^nk・2^{k+2}$の値をnで表せ
この動画を見る 
PAGE TOP