複素数平面 - 質問解決D.B.(データベース) - Page 3

複素数平面

福田の1.5倍速演習〜合格する重要問題040〜上智大学2019年度TEAP理系第2問〜複素数平面上で正三角形となる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数平面において、円周$|z|=1$上の異なる3点$z_1,z_2,z_3$を考える。
このとき、次の条件pとqは同値であることを示せ。
$p:z_1,z_2,z_3$を頂点とする三角形が正三角形である。
$q:z_1+z_2+z_3=0$

2019上智大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題029〜九州大学2016年度理系第5問〜ドモアブルの定理と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$\theta$を$0 \leqq \theta \lt 2\pi$を満たす実数、iを虚数単位とし、$z=\cos\theta+i\sin\theta$で
表される複素数とする。このとき、整数nに対して次の式を証明せよ。
$\cos n\theta=\frac{1}{2}\left(z^n+\frac{1}{z^n}\right), \sin n\theta=-\frac{i}{2}\left(z^n-\frac{1}{z^n}\right)$

(2)次の方程式を満たす実数$x(0 \leqq x \lt 2\pi)$を求めよ。
$\cos x+\cos2x-\cos3x=1$

(3)次の式を証明せよ。
$\sin^220°+\sin^240°+\sin^260°+\sin^280°=\frac{9}{4}$

2016九州大学理系過去問
この動画を見る 

北里大学2021年医学部第1問(2)。複素数平面でド・モアブルの定理を利用した偏角、絶対値の計算や正三角形の残りの頂点を求める

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(2)iを虚数単位とし、$z_1=\frac{(\sqrt3+i)^{17}}{(1+i)^{19}(1-\sqrt3i)^7}, z_2=-1+i$とする。
$z_1$の偏角$\theta$のうち、$\\0 \leqq \theta \lt 2\pi$を満たすものは$\theta=\boxed{オ}$であり、$|z_1|=\boxed{カ}$である。
複素数平面上で$z_1,z_2$を表す点をそれぞれA,Bとする。このとき線分ABを
1辺とする正三角形ABCの、頂点Cを表す複素数の実部は0または$\boxed{キ}$である。
a,bを正の整数とし、複素数$\frac{(\sqrt3+i)^7}{(1+i)^a(1-\sqrt3i)^b}$の偏角の一つが$\frac{\pi}{12}$であるとき、
a+bの最小値は$\boxed{ク}$である。

2021北里大学医学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題015〜東京大学2016年度理系数学第4問〜複素数平面上の三角形が鋭角三角形になる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
zを複素数とする。複素数平面上の3点$A(I),B(z),C(z^2)$が
鋭角三角形をなすようなzの範囲を定め、図示せよ。

2016東京大学理系過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)iを虚数単位とし、$α= -2+2i,β=3+i$とする。
このとき、$α^5$の値は[ア]である。
zは等式 $2|z-α| = |z-β|$を満たす複素数全体を動くとする。
このとき、複素数平面上の点P(z) が描く図形は円であり、その中心を表す複素数は[イ]である。
また、 |z| の最大値は[ウ]である。

2022北里大学医学部過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$t$を実数とし、xの3次式f(x) を
$f(x) = x^3 + (1-2t)x^2+(4-2t)x+4$
により定める。以下の問いに答えよ。
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、$f(x) = 0$ が虚数の
解をもつようなtの範囲を求めよ。

実数tが (1) で求めた範囲にあるとき、方程式 $f(x) = 0$ の異なる2つの虚数解を
α, βとし、実数解をγとする。ただし、$α$の虚部は正、$β$の虚部は負とする。
以下、$α, β, γ$を複素数平面上の点とみなす。
(2) $α, β, γ$をtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点$α$
が描く図形を複素数平面上に図示せよ。

(3) 3点$α, β, γ$が一直線上にあるようなtの値を求めよ。

(4)3点$α, β, γ$が正三角形の頂点となるようなtの値を求めよ。

2022中央大学理工学部過去問
この動画を見る 

暗算?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-\sqrt3x+1=0$のとき,
$x^{30}+\dfrac{1}{x^{30}}$の値を求めよ.
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
この動画を見る 

福岡教育大 複素平面の基本

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ z=a+bi(a \gt 0,b \gt 0)z^2+\dfrac{1}{z^2}=1$を満たす.

(1)zを極形式で表せ$(0 \lt \theta \lt 2\pi)$

(2)$z^{100}+\dfrac{1}{z^{100}}$の値を求めよ.

(3)$z,z^2,z^{100}+\dfrac{1}{z^{100}}$の三点でできる三角形の面積を求めよ.

福岡教育大過去問
この動画を見る 

福田の数学〜立教大学2022年理学部第4問〜複素数平面上の点列と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師:
問題文全文(内容文):
複素数$\alpha=\frac{\sqrt3\ i}{1+\sqrt3\ i}$に対して、複素数$z_n$を
$z_n=8\alpha^{n-1}\ \ \ \ (n=1,\ 2,\ 3,\ ...)$
によって定める。ただしiは虚数単位とする。複素数平面において、原点をOとし、
$z_n$の表す点を$P_n$とする。このとき、以下の問いに答えよ。
(1)$\alpha$の絶対値|$\alpha$と変革$\arg\alpha$をそれぞれ求めよ。
ただし、$0 \leqq \arg\alpha \lt 2\pi$とする。
(2)$z_2,\ z_3$の実部と虚部をそれぞれ求めよ。
(3)$z_n$の極形式をnを用いて表せ。
(4)$O,\ P_n,\ P_{n+1}$を頂点とする三角形の面積$S_n$を$n$を用いて表せ。
(5)(4)で定めた$S_n$に対して、無限級数$\sum_{n=1}^{\infty}S_n$の和Sを求めよ。

2022立教大学理工学部過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(1)〜整式と二項定理とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)$f(x)=(x+2)(x-1)^{10}$とし、この式を展開して
$f(x)=a_0+a_1x+a_2x^2+...+a_{11}x^{11}$
と表す。ただし、$a_0,a_1,...,a_{11}$は定数である。
$(\textrm{a})$多項式$f(x)$を$x-2$で割った時の余りは$\boxed{ア}$である。
$(\textrm{b})a_{10}=-\ \boxed{イ}$である。
$(\textrm{c})a_0+a_2+a_4+a_6+a_8+a_{10}=\boxed{ウエオ}$である。
$(\textrm{d})\ \ \ \ f(i)=\boxed{カキ}-\boxed{クケ}\ i \ $である。ただし、$i$は虚数単位である。

2022明治大学理工学部過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第4問〜サイコロの目で決まる複素数の値に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$を虚数単位とし、$z=\frac{1}{2}+\frac{\sqrt3}{2}\ i\$とおく。
さいころを3回ふり、出た目を順に$a,\ b,\ c$とする。
このとき、積$\ abc$が3の倍数となる確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。
また、$z^{abc}=-1$となる確率は$\frac{\boxed{オカ}}{\boxed{キクケ}}$であり、
$z^{abc}=1$となる確率は$\frac{\boxed{コサシ}}{\boxed{スセソ}}$である。

2022明治大学全統理系過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{7}}\ iを虚数単位とする。\alpha=-1+iとし、zは次の条件をともに満たす複素数とする。\\
条件1.\hspace{10pt}\frac{z-\alpha}{z-\bar{\alpha}}の実部は0である。\\
条件2.\hspace{10pt}zの虚部は0以上である。\\
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で\\
\\
囲まれる部分の面積は\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\piである。\\
\\
また、w=\frac{iz}{z+1}で表される点wがとりうる値全体の集合を表す図形と、\\
図形Cで囲まれる部分の面積は\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}である。
\end{eqnarray}

2022早稲田大学人間科学部過去問
この動画を見る 

山形大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \alpha=\cos36°+i\sin36°$とする.

(1)$(x-1)(x-\alpha)(x-\alpha^2)・・・・・・(x-\alpha^9)$を計算せよ.
(2)$(x-1)(x-\alpha^2)(x-\alpha^4)(x-\alpha^6)(x-\alpha^8)$を計算せよ.
(3)$(x-\alpha)(x-\alpha^3)(x-\alpha^7)(x-\alpha^9)$を計算せよ.
(4)(3)を用いて\alpha+\dfrac{1}{\alpha}を計算せよ.

山形大過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ iは虚数単位とする。次の条件(\textrm{I}),(\textrm{II})のどちらも満たす複素数z全体の集合を\\
Sとする。\\
(\textrm{I})zの虚部は正である。\\
(\textrm{II})複素数平面上の点A(1),B(1-iz),C(z^2)は一直線上にある。\\
このとき、以下の問いに答えよ。\\
(1)1でない複素数\alphaについて、\alphaの虚部が正であることは、\frac{1}{\alpha-1}の虚部が\\
負であるための必要十分条件であることを示せ。\\
(2)集合Sを複素数平面上に図示せよ。\\
(3)w=\frac{1}{z-1}とする。zがSを動くとき、|w+\frac{i}{\sqrt2}|の最小値を求めよ。
\end{eqnarray}

2022筑波大学理系過去問
この動画を見る 

基本問題

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x+\dfrac{1}{x}-\sqrt2$のとき,
x^{2023}+\dfrac{1}{x^{2023}}$の値を求めよ.
この動画を見る 

藤田医科大学 式の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
この動画を見る 

福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
Z+w=Zw
を満たす点wが描く図形を求めよ。

2022大阪大学理系過去問
この動画を見る 

福田の数学〜名古屋大学2022年理系第3問〜複素数平面上の正六角形の頂点の位置

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 複素数平面上に、原点Oを頂点の1つとする正六角形OABCDEが与えられている。\\
ただしその頂点は時計の針の進む方向と逆向きにO,A,B,C,D,Eとする。\\
互いに異なる0でない複素数\alpha,\beta,\gammaが、\\
0 \leqq \arg(\frac{\beta}{\alpha}) \leqq \pi, 4\alpha^2-2\alpha\beta+\beta^2=0, 2\gamma^2-(3\alpha+\beta+2)\gamma+(\alpha+1)(\alpha+\beta)=0\\
を満たし、\alpha,\beta,\gammaのそれぞれが正六角形OABCDEの頂点のいずれかであるとする。\\
(1)\frac{\beta}{\alpha}を求め、\alpha,\betaがそれぞれどの頂点か答えよ。\\
(2)組(\alpha,\beta,\gamma)を全て求め、それぞれの組について正六角形OABCDEを\\
複素数平面上に図示せよ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 

福田の数学〜東京工業大学2022年理系第4問〜複素数平面上の点の軌跡と線分の通過範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とする。複素数zが|z-1|=aかつz≠\frac{1}{2}を満たしながら\\
動くとき、複素数平面上の点w=\frac{z-3}{1-2z}が描く図形をKとする。\\
このとき、次の問いに答えよ。\\
(1)Kが円となるためのaの条件を求めよ。また、そのとき\\
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。\\
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる\\
線分が通過する領域を複素数平面上に図示せよ。
\end{eqnarray}

2022東京工業大学理系過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{5}}}\ 複素数zに関する次の2つの方程式を考える。ただし、\bar{ z }はzと共役な複素数とし、\\
iを虚数単位とする。\\
\\
z\bar{ z }=4 \ldots\ldots①     |z|=|z-\sqrt3+i| \ldots\ldots②\\
\\
(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に\\
図示せよ。\\
\\
(2)①、②の共通解となる複素数を全て求めよ。\\
\\
(3)(2)で求めた全ての複素数の積をwとおく。このときw^nが負の実数となる\\
ための整数nの必要十分条件を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
この動画を見る 

大阪大の問題の背景 特に文系の人見てください

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#複素数平面#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(1)〜複素数の計算とド・モアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)整数a,bは等式(a+bi)^3=-16+16iを満たす。ただし、iは虚数単位とする。\\
(\textrm{i})a=\boxed{\ \ ア\ \ }, b=\boxed{\ \ イ\ \ }である。\\
(\textrm{ii})\frac{i}{a+bi}-\frac{1+5i}{4}を計算すると\boxed{\ \ ウ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+\frac{2}{z}\\
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、\\
境界線は含まない)に定点\alphaをとり、\alphaを通る直線lがCと交わる2点を\beta_1,\beta_2とする。\\
このとき、次の問いに答えよ。ただしiは虚数単位とする。\\
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。\\
(2)点\alphaを固定したままlを動かすとき、積|\beta_1-\alpha|・|\beta_2-\alpha|が最大となる\\
ようなlはどのような直線のときか調べよ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 

2022東海大(医)ドモアブルの定理の基本

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ (\sqrt{2+\sqrt2}+\sqrt{2-\sqrt2i})^8$
これを解け.

2022東海大(医)過去問
この動画を見る 

数学「大学入試良問集」【16−3 ド・モアブルの定理と累乗の取り扱い】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$z$を絶対値が1の複素数とする。
このとき以下の問いに答えよ。
(1)$z^3-z$の実部が$0$となるような$z$をすべて求めよ。
(2)$z^5+z$の絶対値が1となるような$z$をすべて求めよ。
(3)$n$を自然数とする。$z^n+1$の絶対値が1となるような$z$となるような$z$をすべてかけ合わせて得られる複素数を求めよ。
この動画を見る 

数学「大学入試良問集」【16−2 複素数平面と三角形の形との関係】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複素数平面上に三角形$ABC$があり、その頂点$A,B,C$を表す複素数をそれぞれ$z_1,z_2,z_3$とする。
複素数$\omega$に対して、$z_1=\omega z_3,z_2=\omega z_1,z_3=\omega z_2$が成り立つとき、次の各問いに答えよ。
(1)$1+\omega+\omega^2$の値を求めよ。
(2)三角形$ABC$はどんな形の三角形か。
(3)$z=z_1+2z_2+3z_3$の表す点を$D$とすると、三角形$OBD$はどんな形の三角形か。ただし、$O$は原点である。
この動画を見る 

数学「大学入試良問集」【16−1 複素数平面と解と係数の関係】を宇宙一わかりやすく

アイキャッチ画像
単元: #複素数平面#複素数平面#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#数学(高校生)#数C#京都大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$c$を実数とする。$x$についての2次方程式
$x^2+(3-2c)x+c^2+5=0$が2つの解$\alpha,\ \beta$を持つとする。
複素平面上の3点$\alpha,\beta,c^2$が三角形の3頂点になり、その三角形の重心は$0$であるという。
$c$を求めよ。
この動画を見る 

福田の数学〜立教大学2021年理学部第4問〜極形式で与えられたzの計算

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 複素数zをz=\cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}とする。ただし、iは虚数単位とする。また、\\
a=z+\frac{1}{z}, b=z^2+\frac{1}{z^2}, c=z^3+\frac{1}{z^3} とおく。次の問いに答えよ。\\
(1)z^7は有理数になる。その値を求めよ。\\
(2)z+z^2+z^3+z^4+z^5+z^6 は有理数になる。その値を求めよ。\\
(3)A=a+b+c は有理数になる。その値を求めよ。\\
(4)B=a^2+b^2+c^2 は有理数になる。その値を求めよ。\\
(5)C=ab+bc+ca は有理数になる。その値を求めよ。\\
(6)D=a^3+b^3+c^3-3abc は有理数になる。その値を求めよ。\\
\end{eqnarray}

2021立教大学理工学部過去問
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(3)〜複素数平面と図形

アイキャッチ画像
単元: #数A#図形の性質#複素数平面#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 複素数zと正の実数rは、等式\\
z^4=r(\cos\frac{2}{3}\pi+i\sin\frac{2}{3}\pi)  \ldots(*)\\
を満たしている。ただし、iは虚数単位である。\\
(\textrm{i})zの偏角\thetaを0 \leqq \theta \lt 2\pi の範囲にとるとき、\thetaのとりうる値の\\
うち最小のものは\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\pi\ であり、最大のものは\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\pi\ である。\\
(\textrm{ii})等式(*)と等式\\
\\
|z-i|=1\\
\\
が共に成り立つとき、rの値はr=\boxed{\ \ ナ\ \ }\ またはr=\boxed{\ \ ニ\ \ }\ である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 
PAGE TOP