数学(中学生)

二乗を含む連立方程式 本郷高校

単元:
#連立方程式
指導講師:
数学を数楽に
問題文全文(内容文):
$x=?$ $\quad$ $y=?$
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 9y^2 + 4x -28 = 0 \\
x + 3y = 6
\end{array}
\right.
\end{eqnarray}
本郷高等学校
この動画を見る
$x=?$ $\quad$ $y=?$
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 9y^2 + 4x -28 = 0 \\
x + 3y = 6
\end{array}
\right.
\end{eqnarray}
本郷高等学校
【良問です…!】整数:秋田県~全国入試問題解法

単元:
#数学(中学生)#中1数学#文字と式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \dfrac{231}{n+2}$
整数となる$ n $の値を全て求めなさい.
※$ n $は100より小さい素数である.
秋田県入試問題過去問
この動画を見る
$ \dfrac{231}{n+2}$
整数となる$ n $の値を全て求めなさい.
※$ n $は100より小さい素数である.
秋田県入試問題過去問
【中学数学】中点連結定理の問題演習~有名例題2問~ 5-4.5【中3理科】

単元:
#数学(中学生)#中3数学#相似な図形
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)四角形ABCDはAD//BDの台形で2点PQはそれぞれ辺AB,DCの中点である。
AD=14cm,BC=22cmのときPQの長さを求めよ。
問題の図形は動画参照
(2)△ABCの辺AB,BC,CAの中点をそれぞれF,D,Eとする。
△DEFの周りの長さを求めよ。
問題の図形は動画参照
この動画を見る
(1)四角形ABCDはAD//BDの台形で2点PQはそれぞれ辺AB,DCの中点である。
AD=14cm,BC=22cmのときPQの長さを求めよ。
問題の図形は動画参照
(2)△ABCの辺AB,BC,CAの中点をそれぞれF,D,Eとする。
△DEFの周りの長さを求めよ。
問題の図形は動画参照
三平方の定理を導け!!

【中学数学】中点連結定理の問題演習~有名例題2問~

単元:
#数学(中学生)#中3数学#相似な図形
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 四角形ABCDはAD //BCの台形で, 2点P,Qはそれぞれ辺AB, DCの中点である。
AD = 14cm, BC = 22cm, のとき, PQの長さを求めよ
(2) △ABCの辺AB, BC, CAの中点をそれぞれF,D,Eとする。
△DEFの周りの長さを求めよ。
この動画を見る
(1) 四角形ABCDはAD //BCの台形で, 2点P,Qはそれぞれ辺AB, DCの中点である。
AD = 14cm, BC = 22cm, のとき, PQの長さを求めよ
(2) △ABCの辺AB, BC, CAの中点をそれぞれF,D,Eとする。
△DEFの周りの長さを求めよ。
【数学】中高一貫校問題集2幾何150:円:2つの円 方べきの定理の利用

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、2つの円O、Bが2点P、Qで交わり、さらに、円Oは円Bの直径FGと2点A、Bで交わっている。点Bは円Bの中心である。また、点Eは2直線PQ、FGの交点である。EF=4、AB=2のとき、円Bの半径を求めなさい。
この動画を見る
図のように、2つの円O、Bが2点P、Qで交わり、さらに、円Oは円Bの直径FGと2点A、Bで交わっている。点Bは円Bの中心である。また、点Eは2直線PQ、FGの交点である。EF=4、AB=2のとき、円Bの半径を求めなさい。
【数学】中高一貫校問題集2幾何149:円:2つの円 接弦定理の利用

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、2つの円は点Aで内接している。このとき、∠xの大きさを求めなさい。
この動画を見る
図のように、2つの円は点Aで内接している。このとき、∠xの大きさを求めなさい。
【数学】中高一貫校問題集2幾何148:円:2つの円 内接四角形と円周角

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、点O、O'を中心とする2つの円が、直線lにそれぞれ点A、Bで接しており、点Cで円どうしが接している。また、図のように、弧AC上の点をP、弧BC上の点をQとする。∠APC=142°のとき、∠BQCの大きさを求めなさい。
この動画を見る
図のように、点O、O'を中心とする2つの円が、直線lにそれぞれ点A、Bで接しており、点Cで円どうしが接している。また、図のように、弧AC上の点をP、弧BC上の点をQとする。∠APC=142°のとき、∠BQCの大きさを求めなさい。
【数学】中高一貫校問題集2幾何147:円:2つの円:相似の利用

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、点A、Bを中心とする円A、Bがあり、半径はそれぞれ3cm、5cmである。また、点Aは円Bの円周上の点であり、直線lは2つの円の共通接線である。直線ABとlの交点をOとするとき、線分OBの長さを求めなさい。
この動画を見る
図のように、点A、Bを中心とする円A、Bがあり、半径はそれぞれ3cm、5cmである。また、点Aは円Bの円周上の点であり、直線lは2つの円の共通接線である。直線ABとlの交点をOとするとき、線分OBの長さを求めなさい。
【数学】中高一貫校問題集2幾何140:円:方べきの定理:√5の作図

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
長さ1の線分ABから、長さ√5の線分を次の手順で作図できる。
①線分ABのBを超える延長線上に、BC=5となる点Cをとる。
②線分ACを直径とする円Oをかく。
③Bを通り、直線ABに垂直な直線を引き、点Oとの交点をD、Eとする。
(1)長さが√5の線分を次のうちからすべて答えなさい。
AD,AE,AO,BD,BO,CD,CE,CO,DO,EO
(2)(1)で答えた線分の長さが√5であることを証明しなさい。
この動画を見る
長さ1の線分ABから、長さ√5の線分を次の手順で作図できる。
①線分ABのBを超える延長線上に、BC=5となる点Cをとる。
②線分ACを直径とする円Oをかく。
③Bを通り、直線ABに垂直な直線を引き、点Oとの交点をD、Eとする。
(1)長さが√5の線分を次のうちからすべて答えなさい。
AD,AE,AO,BD,BO,CD,CE,CO,DO,EO
(2)(1)で答えた線分の長さが√5であることを証明しなさい。
【数学】中高一貫校問題集2幾何139:円:方べきの定理:4点が円周上にあることの証明

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、円Oの外部に点Pがあり、Pから円Oに接線PA、PBを引く。また、Pを通り、円Oと2点C、Dで交わる直線を引く。ただし、直線CDは円の中心を通らないものとする。このとき、線分ABの中点をMとすると、4点C、M、O、Dは1つの円周上にあることを証明しなさい。
この動画を見る
図のように、円Oの外部に点Pがあり、Pから円Oに接線PA、PBを引く。また、Pを通り、円Oと2点C、Dで交わる直線を引く。ただし、直線CDは円の中心を通らないものとする。このとき、線分ABの中点をMとすると、4点C、M、O、Dは1つの円周上にあることを証明しなさい。
【数学】中高一貫校問題集2幾何138:円:方べきの定理:円の半径と線分の積

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
点Oを中心とする半径7の円の内部に点Pがある。Pを通る円Oの弦ABについて、PA×PB=40であるとき、線分OPの長さを求めなさい。
この動画を見る
点Oを中心とする半径7の円の内部に点Pがある。Pを通る円Oの弦ABについて、PA×PB=40であるとき、線分OPの長さを求めなさい。
【正面突破なら…!】文字式:慶応志木高等学校~全国入試問題解法

単元:
#数学(中学生)#中1数学#文字と式#高校入試過去問(数学)#慶應義塾志木高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x=\dfrac{7}{3+\sqrt2}$のとき,
$ (x-1)(x-2)(x-4)(x-5)$の値を求めよ.
慶応志木高校過去問
この動画を見る
$ x=\dfrac{7}{3+\sqrt2}$のとき,
$ (x-1)(x-2)(x-4)(x-5)$の値を求めよ.
慶応志木高校過去問
文字式は基本を抑えて手際よく!~全国入試問題解法 #shorts #数学 #高校入試 #頭の体操

単元:
#数学(中学生)#中1数学#文字と式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ A=4x-1 $,$ B=-2x+3 $とするとき,次の計算しなさい.
$ -4A+3B+2A $
滋賀県入試問題過去問
この動画を見る
$ A=4x-1 $,$ B=-2x+3 $とするとき,次の計算しなさい.
$ -4A+3B+2A $
滋賀県入試問題過去問
気付けば一瞬な連立方程式

単元:
#連立方程式
指導講師:
数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +2z= 2 \\
x + 2y +z= 7 \\
2x + y + z = -1
\end{array}
\right.
\end{eqnarray}
この動画を見る
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +2z= 2 \\
x + 2y +z= 7 \\
2x + y + z = -1
\end{array}
\right.
\end{eqnarray}
【数学】中高一貫校問題集2幾何134:円:接弦定理: 4点が同一円周上にあるとき

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のように、2点A、Bは2円の交点であり、2点P、QはAを通る直線が2円と交わる点である。また、P、Qにおいて、それぞれ円の接線を引き、その交点をCとする。このとき、4点B、C、P、Qは1つの円周上にあることを証明しなさい。
この動画を見る
右の図のように、2点A、Bは2円の交点であり、2点P、QはAを通る直線が2円と交わる点である。また、P、Qにおいて、それぞれ円の接線を引き、その交点をCとする。このとき、4点B、C、P、Qは1つの円周上にあることを証明しなさい。
【数学】中高一貫校問題集2幾何133:円:接弦定理: 相似の証明2

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のように、円に内接する二等辺三角形ABCがあり、AB=AC=3cm、BC=2cmである。点Bにおける円の接線と辺ACの延長との交点をEとする。また、Cを通り辺ABに平行な直線が円と交わる点をD、BEと交わる点をFとする。
(1)△BCE∽△CFEであることを証明しなさい。
(2)線分CF、EFの長さをそれぞれ求めなさい。
この動画を見る
右の図のように、円に内接する二等辺三角形ABCがあり、AB=AC=3cm、BC=2cmである。点Bにおける円の接線と辺ACの延長との交点をEとする。また、Cを通り辺ABに平行な直線が円と交わる点をD、BEと交わる点をFとする。
(1)△BCE∽△CFEであることを証明しなさい。
(2)線分CF、EFの長さをそれぞれ求めなさい。
【数学】中高一貫校問題集2幾何132:円:接弦定理: 相似の証明1

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図において、△ABCは円Oに内接し、辺BCは辺ABよりも長い。点Bにおける円Oの接線と辺CAの延長との交点をDとし、辺BC上に点Eを、AE//DBとなるようにとる。このとき△ABC∽△EBAであることを証明しなさい。
この動画を見る
右の図において、△ABCは円Oに内接し、辺BCは辺ABよりも長い。点Bにおける円Oの接線と辺CAの延長との交点をDとし、辺BC上に点Eを、AE//DBとなるようにとる。このとき△ABC∽△EBAであることを証明しなさい。
【数学】中高一貫校問題集2幾何131:円:接弦定理:二等辺三角形の証明

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のように、△ABCとその外接円があり、点Aにおける外接円の接線が辺BCの延長と交わる点をDとする。また、∠BACの二等分線がBCと交わる点をEとする。このとき、AD=EDであることを証明しなさい。
この動画を見る
右の図のように、△ABCとその外接円があり、点Aにおける外接円の接線が辺BCの延長と交わる点をDとする。また、∠BACの二等分線がBCと交わる点をEとする。このとき、AD=EDであることを証明しなさい。
【数学】中高一貫校問題集2幾何130:円:接弦定理

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図において、ADは円の接線で、AB=BD、CA=CBである。このとき、∠ADBの大きさを求めなさい。
この動画を見る
右の図において、ADは円の接線で、AB=BD、CA=CBである。このとき、∠ADBの大きさを求めなさい。
【知識を活用…!】二次方程式:巣鴨高等学校~全国入試問題解法

単元:
#数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#巣鴨高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
同じ正の解をもつ3つの2次方程式
$ x^2+ax+b=0 $
$ 2x^2+3ax+4b=0 $
$ x^2-2x-3=0 $
定数$ a,b $の値を求めなさい.
巣鴨高校過去問
この動画を見る
同じ正の解をもつ3つの2次方程式
$ x^2+ax+b=0 $
$ 2x^2+3ax+4b=0 $
$ x^2-2x-3=0 $
定数$ a,b $の値を求めなさい.
巣鴨高校過去問
【中学数学】中点連結定理を分かりやすく~証明~ 5-4【中3数学】

【数学】中高一貫校問題集2幾何129:円:接弦定理:弧の比と円周角の比

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図において、直線?は点Aで円Oに接していて、∠ACB=40°である。また、弧AC:弧CB=3:4である。このとき、∠xの大きさを求めなさい。
この動画を見る
右の図において、直線?は点Aで円Oに接していて、∠ACB=40°である。また、弧AC:弧CB=3:4である。このとき、∠xの大きさを求めなさい。
【数学】中高一貫校問題集2幾何124:円:円の接線:外心、内心、重心はどれ?

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図の△ABCは、∠B=90°の直角三角形であり、3点D、E、Fは△ABCの外心、内心、重心のいずれかである。このとき、△ABCの外心、内心、重心はそれぞれ3点D、E、Fのいずれかであるか答えなさい。
この動画を見る
図の△ABCは、∠B=90°の直角三角形であり、3点D、E、Fは△ABCの外心、内心、重心のいずれかである。このとき、△ABCの外心、内心、重心はそれぞれ3点D、E、Fのいずれかであるか答えなさい。
【補助線をどこに引く !?】図形:成蹊高等学校~全国入試問題解法

単元:
#数学(中学生)#中2数学#平行と合同#高校入試過去問(数学)#成蹊高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ l $と$ m $が平行であるとき,$ \angle x $の大きさを求めよ.
成蹊高等学校過去問
この動画を見る
$ l $と$ m $が平行であるとき,$ \angle x $の大きさを求めよ.
成蹊高等学校過去問
【数学】中高一貫校問題集2幾何122:円:円の接線:内接円の性質

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図の△ABCは、∠C=90°の直角三角形である。AB=10cm、BC=8cm、CA=6cmとし、△ABCの内接円の中心をIとする。また、直線AIと辺BCの交点をD、円ⅠとBC、CAの接点をそれぞれE、Fとする。
(1)円Iの半径を求めなさい。
(2)BD:DCを求めなさい。
(3)線分DEの長さを求めなさい。
この動画を見る
図の△ABCは、∠C=90°の直角三角形である。AB=10cm、BC=8cm、CA=6cmとし、△ABCの内接円の中心をIとする。また、直線AIと辺BCの交点をD、円ⅠとBC、CAの接点をそれぞれE、Fとする。
(1)円Iの半径を求めなさい。
(2)BD:DCを求めなさい。
(3)線分DEの長さを求めなさい。
【数学】中高一貫校問題集2幾何121:円:円の接線:三角形の面積と内接円の半径

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
△ABCの周の長さが23、△ABCの内接円の半径がrのとき、△ABCの面積をrを用いて表しなさい。
この動画を見る
△ABCの周の長さが23、△ABCの内接円の半径がrのとき、△ABCの面積をrを用いて表しなさい。
【数学】中高一貫校問題集2幾何120:円:円の接線:内心の性質

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
△ABCの内心をIとする。∠A=64°のとき、∠BICの大きさを求めなさい。
この動画を見る
△ABCの内心をIとする。∠A=64°のとき、∠BICの大きさを求めなさい。
【数学】中高一貫校問題集2幾何119:円:円の接線:円外から引いた接線の長さは同じ

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、△ABCの内接円が、辺AB、BC、CA、と接する点を、それぞれP、Q、Rとする。また、AB=10、BC=12、CA=8とする。AP=xとおいてxの方程式をつくり、それを解いてxの値を求めなさい。
この動画を見る
図のように、△ABCの内接円が、辺AB、BC、CA、と接する点を、それぞれP、Q、Rとする。また、AB=10、BC=12、CA=8とする。AP=xとおいてxの方程式をつくり、それを解いてxの値を求めなさい。
【数学】中高一貫校問題集2幾何118:円:円の接線:弧の比=中心角 or 円周角

単元:
#数学(中学生)#中3数学#円
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のように、AC、BCを直径とする2つの半径において、大きい半円弦AQは小さい半円に点Pで接している。弧QC:弧AC=2:9のとき、次の問いに答えなさい。
(1)∠QACの大きさを求めなさい。
(2)弧PC:弧BCを求めなさい。
この動画を見る
右の図のように、AC、BCを直径とする2つの半径において、大きい半円弦AQは小さい半円に点Pで接している。弧QC:弧AC=2:9のとき、次の問いに答えなさい。
(1)∠QACの大きさを求めなさい。
(2)弧PC:弧BCを求めなさい。