集合と命題(集合・命題と条件・背理法)
論理と集合「集合の記号」の全パターン【高校数学ⅠA】を宇宙一わかりやすく
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.
次の問いに答えよ。ただし、$\sqrt{ 7 }$は無理数であることを用いてよい。
$A$を有理数全体の集合、$B$を無理数全体の集合とし、空集合を$\varnothing$と表す。
次の(ⅰ)~(ⅳ)が真の命題となるように□に当てはまる記号を次の⓪~⑤の中から1つ選べ。
ただし、同じものを繰り返しでもよい。
(ⅰ)$A□\{0\}$
(ⅱ)$\sqrt{ 28 }□B$
(ⅲ)$A=\{-\}□A$
(ⅳ)$\varnothing=A□B$
⓪$ \in $
①$ \ni $
②$ \subset $
③$ \supset $
④$ \cap $
⑤$ \cup $
この動画を見る
1.
次の問いに答えよ。ただし、$\sqrt{ 7 }$は無理数であることを用いてよい。
$A$を有理数全体の集合、$B$を無理数全体の集合とし、空集合を$\varnothing$と表す。
次の(ⅰ)~(ⅳ)が真の命題となるように□に当てはまる記号を次の⓪~⑤の中から1つ選べ。
ただし、同じものを繰り返しでもよい。
(ⅰ)$A□\{0\}$
(ⅱ)$\sqrt{ 28 }□B$
(ⅲ)$A=\{-\}□A$
(ⅳ)$\varnothing=A□B$
⓪$ \in $
①$ \ni $
②$ \subset $
③$ \supset $
④$ \cap $
⑤$ \cup $
【数字の分類】を宇宙一わかりやすく【高校数学ⅠA】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
【高校数学ⅠA】数字の分類についての解説動画です
この動画を見る
【高校数学ⅠA】数字の分類についての解説動画です
【高校数学】背理法例題演習~基礎的な2題~ 1-19.5【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $\sqrt{6}$が無理数であることを用いて、$1+\sqrt{6}$が、無理数であることを証明せよ
(2) 三角形の内角のうち、少なくとも1つは$60°$以上であることを証明せよ
この動画を見る
(1) $\sqrt{6}$が無理数であることを用いて、$1+\sqrt{6}$が、無理数であることを証明せよ
(2) 三角形の内角のうち、少なくとも1つは$60°$以上であることを証明せよ
【高校数学】背理法~証明の流れを理解しましょう~ 1-19【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{ 2 }$は無理数であることを証明せよ
この動画を見る
$\sqrt{ 2 }$は無理数であることを証明せよ
【高校数学】命題と証明の例題~できなやばい問題~ 1-18.5【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$x, y$は実数、$n$は整数とする。次の命題を証明せよ。
(a) $x^3 \neq 8 \Rightarrow x \neq 2$
(b) $x + y \gt 7 \Rightarrow \lceil x \gt 4 または y \gt 3 \rfloor$
(c) $n^2が7の倍数でないならば、nは7の倍数でない$
-----------------
2⃣
$\lceil m^2 + n^2 が奇数ならば、m,nのうち一方は奇数であり、他方は偶数である。\rfloor$
という命題を証明せよ
この動画を見る
1⃣
$x, y$は実数、$n$は整数とする。次の命題を証明せよ。
(a) $x^3 \neq 8 \Rightarrow x \neq 2$
(b) $x + y \gt 7 \Rightarrow \lceil x \gt 4 または y \gt 3 \rfloor$
(c) $n^2が7の倍数でないならば、nは7の倍数でない$
-----------------
2⃣
$\lceil m^2 + n^2 が奇数ならば、m,nのうち一方は奇数であり、他方は偶数である。\rfloor$
という命題を証明せよ
【高校数学】命題と証明~基礎固めをしっかりと~ 1-18【数学Ⅰ】
【高校数学】必要条件と十分条件~具体例で分かりやすく~ 1-17【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
必要条件と十分条件 具体例紹介動画です
この動画を見る
必要条件と十分条件 具体例紹介動画です
【高校数学】命題と条件の例題~基礎を固めよう~ 1-16.5【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$x$は実数、$n$は自然数とする。次の命題の真偽を調べよ。
(a) $x \gt 1 \Rightarrow x \gt 0$
(b) $x \leqq -1 \Rightarrow |x| \gt 2$
(c) $|x| \leqq \Rightarrow |x-1| \lt 3$
(d) $n$は$18$の正の約数$\Rightarrow n$は$36$の正の約数
-----------------
2⃣
$x,y$は実数、$m$は整数とする。次の条件の否定を述べよ
(a) $x \neq 1$かつ$y = 4$
(b) $x \leqq 3$または$y \gt 7$
(c) $-1 \leqq x \lt -2$
(d) $m$は偶数または$3$の倍数である
(e) $x,y$はともに無理数である
この動画を見る
1⃣
$x$は実数、$n$は自然数とする。次の命題の真偽を調べよ。
(a) $x \gt 1 \Rightarrow x \gt 0$
(b) $x \leqq -1 \Rightarrow |x| \gt 2$
(c) $|x| \leqq \Rightarrow |x-1| \lt 3$
(d) $n$は$18$の正の約数$\Rightarrow n$は$36$の正の約数
-----------------
2⃣
$x,y$は実数、$m$は整数とする。次の条件の否定を述べよ
(a) $x \neq 1$かつ$y = 4$
(b) $x \leqq 3$または$y \gt 7$
(c) $-1 \leqq x \lt -2$
(d) $m$は偶数または$3$の倍数である
(e) $x,y$はともに無理数である
【高校数学】条件の否定~例題と一緒に学ぼう~ 1-16【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$x,y$は実数、$m,n$は整数とする。
次の条件の否定を述べよ。
(ア) $x+y \geqq 2 x+y \lt 2$
(イ) $m$は奇数である $m$は偶数である
(ウ) $x=0$かつ$y \neq 0$ $x \neq 0$または$y=0$
(エ) $x \gt 0$または$x \leqq -2$ $x \leqq 0$ かつ$x \gt -2$したがって$-2 \lt x \leqq 0$
(オ) $m,n$の少なくとも一方は5の倍数である。$m,n$はともに5の倍数でない。
この動画を見る
$x,y$は実数、$m,n$は整数とする。
次の条件の否定を述べよ。
(ア) $x+y \geqq 2 x+y \lt 2$
(イ) $m$は奇数である $m$は偶数である
(ウ) $x=0$かつ$y \neq 0$ $x \neq 0$または$y=0$
(エ) $x \gt 0$または$x \leqq -2$ $x \leqq 0$ かつ$x \gt -2$したがって$-2 \lt x \leqq 0$
(オ) $m,n$の少なくとも一方は5の倍数である。$m,n$はともに5の倍数でない。
【高校数学】命題と条件~全てはここから始まります~ 1-15【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
a, b, c を実数とする。真偽を調べよ。
ac =bc$\Rightarrow$a=b
この動画を見る
a, b, c を実数とする。真偽を調べよ。
ac =bc$\Rightarrow$a=b
【数学Ⅰ】命題と集合 14分でまとめ(高1〜2で見ても意味わからんけど、高3にはハマるはず)
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅰ】命題と集合まとめ動画です
-----------------
(1) $x=2→x^2=4$の真偽は?
(2) $xy=0→x=0$または$y=0$の真偽は?
(3) $x$を実数とすると$x=1→x^3=1$の真偽は?
$x$を複素数とすると$x=1→x^3=1$の真偽は?
この動画を見る
【数学Ⅰ】命題と集合まとめ動画です
-----------------
(1) $x=2→x^2=4$の真偽は?
(2) $xy=0→x=0$または$y=0$の真偽は?
(3) $x$を実数とすると$x=1→x^3=1$の真偽は?
$x$を複素数とすると$x=1→x^3=1$の真偽は?
【高校数学】集合の基礎例題2題~苦手な人は一緒に解こう~ 1-3.5【数学A】
単元:
#数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。
このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}
(1)$A \cap B$={6,12}
(2)$A \cup B$={2,3,4,6,8,9,10,12}
(3)$\overline{ A }$={1,3,5,7,9,11}
(4)$\overline{ B }$={1,2,4,5,7,8,10,11}
(5)$\overline{ A }$$\cap$$\overline{ B }$={1,5,7,11}
(6)$\overline{ A }$$\cap B$={3,9}
(7)$A \cup$$\overline{ B }$={1,2,4,5,6,7,8,10,11,12}
(8)$\overline{ A \cup B }$={1,5,7,11}
-----------------
全体集合$ U $={1,2,3,4,5,6,7,8,9}の部分集合$ A,B $について、
$\overline{ A } \cap \overline{ B }$={1,4,8}, $\overline{ A } \cap B $={6,9}, $ A \cap \overline{ B } $={2,5,7}のとき、次の集合を求めよ。
(1)$A \cup B$={2,3,5,6,7,9}
(2)$A$={2,3,5,7}
(3)$B$={3,6,9}
この動画を見る
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。
このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}
(1)$A \cap B$={6,12}
(2)$A \cup B$={2,3,4,6,8,9,10,12}
(3)$\overline{ A }$={1,3,5,7,9,11}
(4)$\overline{ B }$={1,2,4,5,7,8,10,11}
(5)$\overline{ A }$$\cap$$\overline{ B }$={1,5,7,11}
(6)$\overline{ A }$$\cap B$={3,9}
(7)$A \cup$$\overline{ B }$={1,2,4,5,6,7,8,10,11,12}
(8)$\overline{ A \cup B }$={1,5,7,11}
-----------------
全体集合$ U $={1,2,3,4,5,6,7,8,9}の部分集合$ A,B $について、
$\overline{ A } \cap \overline{ B }$={1,4,8}, $\overline{ A } \cap B $={6,9}, $ A \cap \overline{ B } $={2,5,7}のとき、次の集合を求めよ。
(1)$A \cup B$={2,3,5,6,7,9}
(2)$A$={2,3,5,7}
(3)$B$={3,6,9}
【高校数学】補集合とド・モルガンの法則~言葉の意味を正しく理解~ 1-3【数学A】
単元:
#数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
補集合とド・モルガンの法則の説明動画です
この動画を見る
補集合とド・モルガンの法則の説明動画です
【高校数学】共通部分と和集合~⋂と⋃の記号のイメージ授けます~ 1-2【数学A】
単元:
#数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通部分と和集合の説明動画です
この動画を見る
共通部分と和集合の説明動画です
【高校数学】集合と部分集合~記号の意味を理解しようぜ~ 1-1【数学A 】
単元:
#数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
集合と部分集合説明動画です
この動画を見る
集合と部分集合説明動画です
【高校数学】背理法がどの動画見てもわからない人は、見なさい
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【高校数学】背理法の解説動画です
-----------------
\sqrt{ 3 }が無理数であることを証明せよ
この動画を見る
【高校数学】背理法の解説動画です
-----------------
\sqrt{ 3 }が無理数であることを証明せよ
小樽商科大 3次方程式 整数解 有理数解 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#小樽商科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
小樽商科大学過去問題
$x^3-3x-1=0$の解をα
次の(1)~(3)を示せ。
(1)αは整数でない
(2)αは有理数でない
(3)αは$p+q\sqrt3$(p,q有理数)の形ではない。
この動画を見る
小樽商科大学過去問題
$x^3-3x-1=0$の解をα
次の(1)~(3)を示せ。
(1)αは整数でない
(2)αは有理数でない
(3)αは$p+q\sqrt3$(p,q有理数)の形ではない。
鹿児島(医)慶應(理) 高校数学 Japanese university entrance exam questions
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#複素数平面#集合と命題(集合・命題と条件・背理法)#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
鹿児島大学過去問題・類慶応義塾大学
二つの整数の平方の和で表される数
全体からなる集合をA
・x,yが集合Aの要素であるとき、積xyも集合Aの要素であることを証明せよ
・5および$5^5$は集合Aの要素であることを示せ
この動画を見る
鹿児島大学過去問題・類慶応義塾大学
二つの整数の平方の和で表される数
全体からなる集合をA
・x,yが集合Aの要素であるとき、積xyも集合Aの要素であることを証明せよ
・5および$5^5$は集合Aの要素であることを示せ
福田の一夜漬け数学〜絶対不等式(2)〜受験編
単元:
#数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#三角関数#軌跡と領域#三角関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(1)任意の$\theta$に対して、$-2 \leqq x\cos\theta+y\sin\theta \leqq y+1$ が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
(2)任意の角$\alpha,\beta$に対して、$-1 \leqq x^2\cos\alpha+y\sin\beta \leqq 1$が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
この動画を見る
(1)任意の$\theta$に対して、$-2 \leqq x\cos\theta+y\sin\theta \leqq y+1$ が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
(2)任意の角$\alpha,\beta$に対して、$-1 \leqq x^2\cos\alpha+y\sin\beta \leqq 1$が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
福田の一夜漬け数学〜絶対不等式(1)〜受験編
単元:
#数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
実数aに対し、不等式 $y \leqq 2ax-a^2+2a+2$の表す領域をD(a)とする。
(1)$-1 \leqq a \leqq 2$を満たす全てのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。
(2)$-1 \leqq a \leqq 2$を満たすいずれかのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。
この動画を見る
実数aに対し、不等式 $y \leqq 2ax-a^2+2a+2$の表す領域をD(a)とする。
(1)$-1 \leqq a \leqq 2$を満たす全てのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。
(2)$-1 \leqq a \leqq 2$を満たすいずれかのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。
京都大学入試問題 3次方程式が整数解を持たない時、解は無理数であることの証明 高校数学
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
方程式$x^3+x-8=0$は
(1)ただ1つの実根を1と2との間にもつことを示せ。
(2)この根は無理数であることを証明せよ。
京大過去問
この動画を見る
方程式$x^3+x-8=0$は
(1)ただ1つの実根を1と2との間にもつことを示せ。
(2)この根は無理数であることを証明せよ。
京大過去問
【高校数学】「論理と集合」と「ベン図」をたぶん日本一わかりやすく解説した動画【篠原好】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「論理と集合」について、わかりやすく解説しています。
この動画を見る
「論理と集合」について、わかりやすく解説しています。
【For you動画-19】 数Ⅰ-命題
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎それぞれの命題の逆・裏・対偶を書き、 ( )の中の真偽を書こう!!
①【命】$x=-3$ ⇒ $x=9$ ( )
【逆】________( )
【裏】________( )
【対】________( )
【命】②$1x1 \leqq 4$ ⇒ $1x1 \leqq 3$( )
【逆】________( )
【裏】________( )
【対】________( )
◎次の$口$に、必要十分条件である(A)
十分条件であるが、必要条件ではない(B)
必要条件であるが、十分条件ではない(C)
どちらでもない(D)のどれかを入れよう!!
③$X=3$は、$X^2-2x-3=0$であるための $口$
④$X^2-8X+16=0$は、$X=4$でであるための$口$
⑤$|x-1 \lt 3$は、$1x| \lt 2$であるための$口$
この動画を見る
◎それぞれの命題の逆・裏・対偶を書き、 ( )の中の真偽を書こう!!
①【命】$x=-3$ ⇒ $x=9$ ( )
【逆】________( )
【裏】________( )
【対】________( )
【命】②$1x1 \leqq 4$ ⇒ $1x1 \leqq 3$( )
【逆】________( )
【裏】________( )
【対】________( )
◎次の$口$に、必要十分条件である(A)
十分条件であるが、必要条件ではない(B)
必要条件であるが、十分条件ではない(C)
どちらでもない(D)のどれかを入れよう!!
③$X=3$は、$X^2-2x-3=0$であるための $口$
④$X^2-8X+16=0$は、$X=4$でであるための$口$
⑤$|x-1 \lt 3$は、$1x| \lt 2$であるための$口$
【For you動画-17】 数Ⅰ-集合
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎U={x1xは、10以下の自然数}を全体集合
Uの部分集合A={1.2.5.6.9 }
B={3.8.9.10},C={1.3.4.9.10〕とする。
①$A \cup B=$
②$A \cap B$
③$\overline{ A } \cap B=$
④$\overline{ B \cup C}=$
⑤$(\overline{ A } \cap B)\cup C=$
◎◎U={x1xは10以下の自然数」を全体集合 とする。Uの部分集合A、Bについて、
$\overline{ A } \cap B ${4,5,10},$A \cap \overline{ B } ${3,8}
$\overline{ A } \cap \overline{ B } ${1,6,9}である。
⑥$A \cap B=$
⑦$A=$
⑧$A \cup B=$
この動画を見る
◎U={x1xは、10以下の自然数}を全体集合
Uの部分集合A={1.2.5.6.9 }
B={3.8.9.10},C={1.3.4.9.10〕とする。
①$A \cup B=$
②$A \cap B$
③$\overline{ A } \cap B=$
④$\overline{ B \cup C}=$
⑤$(\overline{ A } \cap B)\cup C=$
◎◎U={x1xは10以下の自然数」を全体集合 とする。Uの部分集合A、Bについて、
$\overline{ A } \cap B ${4,5,10},$A \cap \overline{ B } ${3,8}
$\overline{ A } \cap \overline{ B } ${1,6,9}である。
⑥$A \cap B=$
⑦$A=$
⑧$A \cup B=$