整数の性質
√と二乗は打ち消し合う?? 熊本マリスト学園
単元:
#数学(中学生)#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$9+\sqrt {a^2} = 25$
整数aを求めよ
熊本マリスト学園高等学校
この動画を見る
$9+\sqrt {a^2} = 25$
整数aを求めよ
熊本マリスト学園高等学校
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 7^{n+1}$が19で割り切れるならnは平方数でないことを示せ.
この動画を見る
$ 7^{n+1}$が19で割り切れるならnは平方数でないことを示せ.
整数問題!これ2通りで解けますか?【札幌医科大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#札幌医科大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$n$に対して
$N=(n+2)^3-n(n+1)(n+2)$
が36の倍数になるような$n$をすべて求めよ。
札幌医科大過去問
この動画を見る
自然数$n$に対して
$N=(n+2)^3-n(n+1)(n+2)$
が36の倍数になるような$n$をすべて求めよ。
札幌医科大過去問
富山大(医)整数問題基本
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$4^{3n-2}-1$を9で割ると3余ることを示せ.
(2)$n^3+3n^2+2n-3$は5の倍数でないことを示せ.
富山大(医)過去問
この動画を見る
(1)$4^{3n-2}-1$を9で割ると3余ることを示せ.
(2)$n^3+3n^2+2n-3$は5の倍数でないことを示せ.
富山大(医)過去問
n進法に苦手意識ある人必見!難しいことはありません【京都大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を4以上の自然数とする。数2,12,1331がすべて$n$進法で表記されているとして,
$2^{12}=1331$
が成り立っている。このとき$n$はいくつか。十進法で答えよ。
京都大過去問
この動画を見る
$n$を4以上の自然数とする。数2,12,1331がすべて$n$進法で表記されているとして,
$2^{12}=1331$
が成り立っている。このとき$n$はいくつか。十進法で答えよ。
京都大過去問
整数問題 東京学芸大学附属
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2^a \times 3^b \times 7^c$(a,b,cは正の整数)の形で表される3ケタの数の中で最小の数と最大の数を求めよ。
東京学芸大学附属高校
この動画を見る
$2^a \times 3^b \times 7^c$(a,b,cは正の整数)の形で表される3ケタの数の中で最小の数と最大の数を求めよ。
東京学芸大学附属高校
整数問題の難問!誘導ありでも難しいです【九州大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数$m,n$が、$n^4=1+210m^2$ ・・・①を満たすとき,以下の問いに答えよ。
(1)$\displaystyle \frac{n^2+1}{2},\displaystyle \frac{n^2-1}{2}$は互いに素な整数であることを示せ。
九州大過去問
この動画を見る
自然数$m,n$が、$n^4=1+210m^2$ ・・・①を満たすとき,以下の問いに答えよ。
(1)$\displaystyle \frac{n^2+1}{2},\displaystyle \frac{n^2-1}{2}$は互いに素な整数であることを示せ。
九州大過去問
高校入試では珍しい問題 巣鴨高校
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a,bを整数とする。
$\sqrt 2 (a+b+1) = a-b-5$を満たすときa,bの値を求めよ。
巣鴨高等学校
この動画を見る
a,bを整数とする。
$\sqrt 2 (a+b+1) = a-b-5$を満たすときa,bの値を求めよ。
巣鴨高等学校
高校入試だけどガウス記号 明大明治
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xに対してxをこえない最大の整数[x]と表すことにする。
3<x<5のとき
$x^2 - [x] \times x - [x] = 0$となるxの値を求めよ。
明治大学付属明治高等学校
この動画を見る
xに対してxをこえない最大の整数[x]と表すことにする。
3<x<5のとき
$x^2 - [x] \times x - [x] = 0$となるxの値を求めよ。
明治大学付属明治高等学校
横浜国立大(改)整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\dfrac{1}{3}\sqrt{n^2+48P}$が整数となる自然数n,素数Pの組をすべて求めよ.
横国(改)過去問
この動画を見る
$\dfrac{1}{3}\sqrt{n^2+48P}$が整数となる自然数n,素数Pの組をすべて求めよ.
横国(改)過去問
福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。
(2)点(2,\ 4)がDに含まれる確率は
$\frac{\boxed{キ}}{\boxed{ク}}$
点(2,\ 3)がDに含まれる確率は$\frac{\boxed{ケ}}{\boxed{コ}}$である。
2022上智大学文系過去問
この動画を見る
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。
(2)点(2,\ 4)がDに含まれる確率は
$\frac{\boxed{キ}}{\boxed{ク}}$
点(2,\ 3)がDに含まれる確率は$\frac{\boxed{ケ}}{\boxed{コ}}$である。
2022上智大学文系過去問
大学入試問題#323 千葉大学(2010) #整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$3^n=k^3+1$を満たす正の整数の組$(k,n)$をすべて求めよ。
出典:2010年千葉大学 入試問題
この動画を見る
$3^n=k^3+1$を満たす正の整数の組$(k,n)$をすべて求めよ。
出典:2010年千葉大学 入試問題
ルートを含む方程式
単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
方程式を解け
$\sqrt{2x-1} - \sqrt {x-1} = \sqrt {6-x}$
岡山県立大学
この動画を見る
方程式を解け
$\sqrt{2x-1} - \sqrt {x-1} = \sqrt {6-x}$
岡山県立大学
3つの素数の平方の和が素数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
p,q,rは相異なる素数$p^2+q^2+r^2$が素数となるための必要条件を2つ以上挙げてください.
この動画を見る
p,q,rは相異なる素数$p^2+q^2+r^2$が素数となるための必要条件を2つ以上挙げてください.
大学入試問題#316 群馬大学(2010) #整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師:
ますただ
問題文全文(内容文):
$2 \leqq p \lt q \lt r$
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r} \geqq 1$をみたす整数の組$(p.g.r)$をすべて求めよ
出典:2010年群馬大学 入試問題
この動画を見る
$2 \leqq p \lt q \lt r$
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r} \geqq 1$をみたす整数の組$(p.g.r)$をすべて求めよ
出典:2010年群馬大学 入試問題
階乗の方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{(x^2-1)!}{x^2-1} = 23!$のとき
x=?
この動画を見る
$\frac{(x^2-1)!}{x^2-1} = 23!$のとき
x=?
中学生向け整数問題その3
単元:
#中2数学#式の計算(単項式・多項式・式の四則計算)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
この動画を見る
自然数A,Bの最大公約数が6で最小公倍数は432である.(A,B)をすべて求めよ.
福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。
2022立教大学経済学部過去問
この動画を見る
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。
2022立教大学経済学部過去問
中学生向け整数問題その2
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$6mn=9m-10n+303$を満たす(m,n)をすべて求めよ.
この動画を見る
m,nを自然数とする.
$6mn=9m-10n+303$を満たす(m,n)をすべて求めよ.
【3分で解決!一度は解きたい典型問題!】整数:大阪府公立高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連続する3つの整数の和が2022となるとき
この連続する3つの整数のうち最も小さい整数を求めなさい.
大阪府高校過去問
この動画を見る
連続する3つの整数の和が2022となるとき
この連続する3つの整数のうち最も小さい整数を求めなさい.
大阪府高校過去問
福田の数学〜立教大学2022年理学部第1問(5)〜最大公約数と最小公倍数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\ a \lt b$ を満たす自然数の組a$,\ b$の和が119、最小公倍数が462であるとき、
$a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }$である。
2022立教大学理学部過去問
この動画を見る
$\ a \lt b$ を満たす自然数の組a$,\ b$の和が119、最小公倍数が462であるとき、
$a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }$である。
2022立教大学理学部過去問
【高校数学あるある】階乗の末尾に0はいくつ並ぶ? #Shorts
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
150!の末尾が0の個数を求めよ。
この動画を見る
150!の末尾が0の個数を求めよ。
素数が絡んだ整数問題(再アップ)【青山学院大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
素数$p,q$および自然数$n$に対し,$\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{pq}=\dfrac{1}{n}$が成り立つような$(p,q,n)$の組をすべて求めよ。
青山学院大過去問
この動画を見る
素数$p,q$および自然数$n$に対し,$\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{pq}=\dfrac{1}{n}$が成り立つような$(p,q,n)$の組をすべて求めよ。
青山学院大過去問
ただの分数式だけど
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
a,bは正の整数である.
$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2018}$を満たす(a,b)を全て求めよ.ただし1009は素数とする.
この動画を見る
a,bは正の整数である.
$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{2018}$を満たす(a,b)を全て求めよ.ただし1009は素数とする.
数のいれかえ 東海高校(改)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
ある2つの位の数をいれかえるともとの整数より90大きくなる。
このような3ケタの自然数は何個ある?
東海高等学校(改)
この動画を見る
ある2つの位の数をいれかえるともとの整数より90大きくなる。
このような3ケタの自然数は何個ある?
東海高等学校(改)
英国数学オリンピック 高校入試レベルの問題
単元:
#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$
英国数学オリンピック過去問
この動画を見る
すべてのxで次の式が成り立つ整数(a,b,c)をすべて求めよ.
$(x-10)(x-a)+1=(x+a)(x+c)$
英国数学オリンピック過去問
【整数問題】超典型的な問題!解けますか?【数学 入試問題】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{6}$かつ$m<n$を満たす正の整数$m,n$の組($m,n$)をすべて求めよ。
この動画を見る
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{6}$かつ$m<n$を満たす正の整数$m,n$の組($m,n$)をすべて求めよ。
イラン数学オリンピック 整数問題
単元:
#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
Pが5以上の素数ならば,$7^P-6^P-1$は43の倍数であることを示せ.
イラン数学オリンピック過去問
この動画を見る
Pが5以上の素数ならば,$7^P-6^P-1$は43の倍数であることを示せ.
イラン数学オリンピック過去問
指数が絡んだ整数問題
単元:
#数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2^m - 2^n = 2016$
$m=?$ $n=?$
(mとnは自然数)
この動画を見る
$2^m - 2^n = 2016$
$m=?$ $n=?$
(mとnは自然数)
【高校数学】「これ」知ってる? フェルマーが愛した無限降下法という証明方法 #Shorts
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\sqrt3 $が無理数であることを証明せよ。
この動画を見る
$\sqrt3 $が無理数であることを証明せよ。