図形と方程式 - 質問解決D.B.(データベース) - Page 5

図形と方程式

福田の数学〜神戸大学2022年文系第2問〜円が切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ aを正の実数とし、円x^2+y^2=1と直線y=\sqrt ax-2\sqrt aが異なる2点P,Q\\
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。\\
(1)aの取りうる値の範囲を求めよ。\\
(2)s,tの値をaを用いて表せ。\\
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。\\
(4)tの値をsを用いて表せ。
\end{eqnarray}

2022神戸大学文系過去問
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とし、双曲線\frac{x^2}{4}-\frac{y^2}{4}=1と直線y=\sqrt ax+\sqrt aが異なる2点P,Q\\
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。\\
(1)aの取りうる値の範囲を求めよ。\\
(2)s,tの値をaを用いて表せ。\\
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。\\
(4)tの値をsを用いて表せ。
\end{eqnarray}

2022神戸大学理系過去問
この動画を見る 

【数学IIB】図形と方程式まとめ(内分外分、直線の方程式、円の方程式、平行移動)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
中心(1,4)、半径3の円の方程式は?
この動画を見る 

【良問】数IIの知識で解けます【山形大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。

山形大過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第3問〜線分の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 正の実数tに対し、座標平面上の2点P(0,t)とQ(\frac{1}{t},0)を考える。\hspace{80pt}\\
tが1 \leqq t \leqq 2の範囲を動くとき、座標平面内で線分PQが通過する部分を図示せよ。
\end{eqnarray}

2022大阪大学理系過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第4問〜立方体の内部の点と結んだ線分の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ tを実数とし、座標空間に点A(t-1,t,t+1)をとる。また、(0,0,0),(1,0,0),\\
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を\\
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を\\
Wとし、Wの体積をf(t)とする。\\
(1)f(-1)を求めよ。\\
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 次の問いに答えよ。\\
(1)実数x,yについて、「|x-y| \leqq x+y」であることの必要十分条件は\\
「x \geqq 0かつy \geqq 0 」であることを示せ。\\
(2)次の不等式で定まるxy平面上の領域を図示せよ。\\
|1+y-2x^2-y^2| \leqq 1-y-y^2
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
Z+w=Zw
を満たす点wが描く図形を求めよ。

2022大阪大学理系過去問
この動画を見る 

【数Ⅱ】領域内の点の最大値・最小値【具体例を作って方針を立てよう】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
不等式$x^2+y^2 \leqq 9$,$y \geqq \dfrac{1}{3}x-1$で表される領域をDとする.
領域D内の点$(x,y)$について,-$x+y$の最大値・最小値を求めよ.
この動画を見る 

福田の数学〜東北大学2022年文系第3問〜領域における最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを正の実数とし、xy平面上の直線l:ax;by-2=0を考える。\\
(1)直線lと原点の距離が2以上であり、直線lと直線x=1の交点のy座標が\\
2以上であるような点(a,b)の取りうる範囲Dを求め、ab平面上に図示せよ。\\
(2)点(a,b)が(1)で求めた領域Dを動くとする。このとき、\\
3a+2bを最大にするa,bの値と3a+2bの最大値を求めよ。
\end{eqnarray}

2022東北大学文系過去問
この動画を見る 

【数Ⅱ】三角形の重心の軌跡【除外点に注意しよう】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
点Qが円$x^2+y^2=9$上を動くとき,
点$A(4,0)$と点Qを結ぶ線分AQの中点Pの軌跡を求めよ.
この動画を見る 

福田の数学〜東京工業大学2022年理系第3問〜直角三角形の頂点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ \alphaは0 \lt \alpha \lt \frac{\pi}{2}を満たす実数とする。\angle A=\alphaおよび\angle P=\frac{\pi}{2}を満たす直角三角形APB\\
が、次の2つの条件(\textrm{a}),(\textrm{b})を満たしながら、時刻t=0から時刻t=\frac{\pi}{2}まで\\
xy平面上を動くとする。\\
(\textrm{a})時刻tでの点A,Bの座標は、それぞれA(\sin t,0),B(0, \cos t)である。\\
(\textrm{b})点Pは第一象限内にある。\\
このとき、次の問いに答えよ。\\
(1)点Pはある直線上を動くことを示し、その直線の方程式を\alphaを用いて表せ。\\
(2)時刻t=0から時刻t=\frac{\pi}{2}までの間に点Pが動く道のりを\alphaを用いて表せ。\\
(3)xy平面内において、連立不等式\\
x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0\\
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。
\end{eqnarray}

2022東京工業大学理系過去問
この動画を見る 

【数Ⅱ】軌跡の基本 アポロニウスの円【書き方と意味を理解しよう】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 点A(-1,0),点B(2,0)からの距離の比が2:1である点Pの軌跡を求めよ.$
この動画を見る 

福田の数学〜京都大学2022年文系第4問〜線分の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ a,bを正の実数とする。直線L:ax+by=1と曲線y=-\frac{1}{x}との2つの交点\\
のうち、y座標が正のものをP、負のものをQとする。また、Lとx軸との交点を\\
Rとし、Lとy軸との交点をSとする。a,bが条件\\
\frac{PQ}{RS}=\sqrt2\\
を満たしながら動くとき、線分PQの中点の軌跡を求めよ。
\end{eqnarray}

2022京都大学文系過去問
この動画を見る 

【数Ⅱ】2つの円の位置関係・交点を通る直線または円の方程式【知らないと解けない知識問題】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 2円x^2+y^2-10=0,x^2+y^2+2x-2y-6=0が2点で交わることを示せ.$
この動画を見る 

【数Ⅱ】円外の点から引いた接線【頻出問題 4S数学問題集で解く】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 点(3,1)を通り,円x^2+y^2=5に接する直線の方程式を求めよ.$
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{5}}}\ 複素数zに関する次の2つの方程式を考える。ただし、\bar{ z }はzと共役な複素数とし、\\
iを虚数単位とする。\\
\\
z\bar{ z }=4 \ldots\ldots①     |z|=|z-\sqrt3+i| \ldots\ldots②\\
\\
(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に\\
図示せよ。\\
\\
(2)①、②の共通解となる複素数を全て求めよ。\\
\\
(3)(2)で求めた全ての複素数の積をwとおく。このときw^nが負の実数となる\\
ための整数nの必要十分条件を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第3問〜指数不等式の領域が表す面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)連立不等式x \geqq 2, 2^x \leqq x^y \leqq x^2の表す領域をxy平面上に図示せよ。\\
ただし、自然対数の底eが2 \lt e \lt 3を満たすことを用いてよい。\\
(2)a \gt 0に対して、連立不等式2 \leqq x \leqq 6, (x^y-2^x)(x^a-x^y) \geqq 0\\
の表すxy平面上の領域の面積をS(a)とする。\\
S(a)を最小にするaの値を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
この動画を見る 

【数Ⅱ】円の接線【流れを覚えて自分で導出する】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+y^2=25上の点(3,4)における接線lの方程式を求めよ.$
この動画を見る 

【数Ⅱ】円を表す方程式【図形と方程式の関係】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: めいちゃんねる
問題文全文(内容文):
円を表す方程式を求めよ.
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ Oを原点とする座標平面上で考える。座標平面上の2点S(x_1,y_1),T(x_2,y_2)\\
に対し、点Sが点Tから十分離れているとは、\\
|x_1-x_2| \geqq 1 または |y_1-y_2| \geqq 1\\
が成り立つことと定義する。\\
不等式\\
0 \leqq x \leqq 3, 0 \leqq y \leqq 3\\
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。\\
さらに、次の条件(\textrm{i}),(\textrm{ii})を共に満たす点Pをとる。\\
(\textrm{i})点Pは領域Dの点であり、かつ、放物線y=x^2上にある。\\
(\textrm{ii})点Pは、3点O,A,Bのいずれからも十分離れている。\\
点Pのx座標をaとする。\\
(1)aのとりうる値の範囲を求めよ。\\
(2)次の条件(\textrm{iii}),(\textrm{iv})をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。\\
(\textrm{iii})点Qは領域Dの点である。\\
(\textrm{iv})点Qは、4点O,A,B,Pのいずれからも十分離れている。\\
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+\frac{2}{z}\\
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、\\
境界線は含まない)に定点\alphaをとり、\alphaを通る直線lがCと交わる2点を\beta_1,\beta_2とする。\\
このとき、次の問いに答えよ。ただしiは虚数単位とする。\\
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。\\
(2)点\alphaを固定したままlを動かすとき、積|\beta_1-\alpha|・|\beta_2-\alpha|が最大となる\\
ようなlはどのような直線のときか調べよ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 

【数Ⅱ】点と直線の距離の公式【導出をしてみよう】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
点と直線の距離の公式の求め方に関して解説していきます.
この動画を見る 

【数Ⅱ】図形と方程式:束の考え方…我々は一体何をさせられているのか。

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの円
$x^2+y^2=25$
$(x-4)^2+(y-3)^2=2$
について
(1)2つの円の交点を通る直線の式を求めよ
(2)2つの円の交点と(3,1)を通る円の式を求めよ
この動画を見る 

【数Ⅱ】直線に対称な点を求める【図の描き方を数式に】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
直線に対称な点を求める方法に関して解説していきます.
この動画を見る 

【数Ⅱ】内分の公式・外分の公式を導出から丁寧に【公式を1つだけにする!?】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 数直線上の点A(3),B(6)について,線分ABを3:2に内分する点Pの座標を求めよ.$
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#軌跡と領域#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
[1]座標平面上に点A(-8,0)をとる。また、不等式\\
x^2+y^2-4x-10y+4 \leqq 0\\
の表す領域をDとする。\\
\\
\\
(1)領域Dは、中心が点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })、半径が\boxed{\ \ ウ\ \ }の円の\\
\boxed{\ \ エ\ \ }である。\\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪ 周   ① 内部   ② 外部   \\
③ 周および内部   ④ 周および外部\\
\\  
\\
以下、点(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })をQとし、方程式\\
x^2+y^2-4x-10y+4=0\\
の表す図形をCとする。\\
\\
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。\\
\\
(\textrm{i})(1)により、直線y=\boxed{\ \ オ\ \ }は点Aを通るCの接線の一つとなること\\
がわかる。\\
\\
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。\\
点Aを通り、傾きがkの直線をlとする。\\
\\
太郎:直線lの方程式はy=k(x+8)と表すことができるから、\\
これを\\
x^2+y^2-4x-10y+4=0\\
に代入することで接線を求められそうだね。\\
花子:x軸と直線AQのなす角のタンジェントに着目することでも\\
求められそうだよ。\\
\\
(\textrm{ii}) 太郎さんの求め方について考えてみよう。\\
y=k(x+8)をx^2+y^2-4x-10y+4=0に代入すると、\\
xについての2次方程式\\
(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0\\
が得られる。この方程式が\boxed{\ \ カ\ \ }ときのkの値が接線の傾きとなる。\\
\\
\boxed{\ \ カ\ \ }の解答群\\
⓪重解をもつ\\
①異なる2つの実数解をもち、1つは0である\\
②異なる2つの正の実数解をもつ\\
③正の実数解と負の実数解をもつ\\
④異なる2つの負の実数解をもつ\\
⑤異なる2つの虚数解をもつ\\
\\
(\textrm{iii})花子さんの求め方について考えてみよう。\\
x軸と直線AQのなす角を\theta(0 \lt \theta \leqq \frac{\pi}{2})とすると\\
\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\\
であり、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾きは\tan\boxed{\ \ ケ\ \ }\\
と表すことができる。\\
\\
\boxed{\ \ ケ\ \ }の解答群\\
⓪\theta   ①2\theta   ②(\theta+\frac{\pi}{2})\\
③(\theta-\frac{\pi}{2})   ④(\theta+\pi)   ⑤(\theta-\pi)\\
⑥(2\theta+\frac{\pi}{2})   ⑦(2\theta-\frac{\pi}{2})\\
\\
\\
(\textrm{iv})点Aを通るCの接線のうち、直線y=\boxed{\ \ オ\ \ }と異なる接線の傾き\\
をk_0とする。このとき、(\textrm{ii})または(\textrm{iii})の考え方を用いることにより\\
k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\\
であることがわかる。\\
直線lと領域Dが共有点をもつようなkの値の範囲は\boxed{\ \ シ\ \ }である。\\
\\
\boxed{\ \ シ\ \ }の解答群\\
⓪k \gt k_0 ①k \geqq k_0\\
②k \lt k_0 ③k \leqq k_0\\
④0 \lt k \lt k_0 ⑤0 \leqq k \leqq k_0\\
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

【数Ⅱ】図形と方程式:横浜国立大2019年(理系)第4問の解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)
2019年度(前期)第4問

Oを原点とするxy平面上に2点A(2,0)、B(0,2)がある。2点P、Qは以下の条件を満たしながら動く。
・Pは線分OA上にある。
・Qは線分OB上にある。
・△OPQの面積は1である。
点Pの座標を(t,0)とする。
(1)tの取りうる値の範囲を求めよ。
(2)tが(1)で求めた範囲を動くとき、線分PQが通過する領域をxy平面上に図示せよ。
この動画を見る 

福田のわかった数学〜高校2年生070〜三角関数(9)三角方程式の共通解

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(9) 三角方程式の共通解\\
次の連立方程式0 \leqq x \lt 2\piに共通解をもつとき\\
aの値とそのときの共通解を求めよ。\\
\left\{
\begin{array}{1}
\sin2x+a\cos x=0\\
\cos2x+a\sin x=0
\end{array}
\right.
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生066〜三角関数(5)三角方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(5) 三角方程式\\
定角\alphaに対して次の一般解を求めよ。\\
(1)\sin x=\sin\alpha (2)\cos x=\cos\alpha\\
(3)\tan x=\tan\alpha
\end{eqnarray}
この動画を見る 
PAGE TOP