接線と増減表・最大値・最小値

【数Ⅱ】【微分法と積分法】接線からの関数決定 ※問題文は概要欄

【数Ⅱ】【微分法と積分法】方程式の解の個数5 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式2x³-3x²-36x=aが1個の正の解と2個の負の解をもつように、定数aの値の範囲を定めよ。
この動画を見る
方程式2x³-3x²-36x=aが1個の正の解と2個の負の解をもつように、定数aの値の範囲を定めよ。
【数Ⅱ】【微分法と積分法】方程式の解の個数8 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線C:y=x³+3x²について、次の問いに答えよ。
(1)C上の点P(t,t³+3t)におけるCの接線が点A(0,a)を通る時、等式2t³+3t²+a=0が成り立つことを示せ。
(2)Aを通るCの接線が3本存在するとき、aの値の範囲を求めよ。
この動画を見る
曲線C:y=x³+3x²について、次の問いに答えよ。
(1)C上の点P(t,t³+3t)におけるCの接線が点A(0,a)を通る時、等式2t³+3t²+a=0が成り立つことを示せ。
(2)Aを通るCの接線が3本存在するとき、aの値の範囲を求めよ。
【数Ⅱ】【微分法と積分法】方程式の解の個数7 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式x³-3ax+a=0が異なる3個の実数解をもつとき、定数aの値の範囲を求めよ。
この動画を見る
方程式x³-3ax+a=0が異なる3個の実数解をもつとき、定数aの値の範囲を求めよ。
【数Ⅱ】【微分法と積分法】方程式の解の個数6 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
4次方程式x⁴-4x³-2x²+12x-a=0が異なる4個の実数解を持ち、そのうち2個は正、残りの2個は負であるとき、定数aの値の範囲を求めよ。
この動画を見る
4次方程式x⁴-4x³-2x²+12x-a=0が異なる4個の実数解を持ち、そのうち2個は正、残りの2個は負であるとき、定数aの値の範囲を求めよ。
【数Ⅱ】【微分法と積分法】極大極小の条件2 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)=x⁴+4x³+2ax²が極大値と極小値を持つように,定数aの値の範囲を定めよ。
この動画を見る
関数f(x)=x⁴+4x³+2ax²が極大値と極小値を持つように,定数aの値の範囲を定めよ。
【数Ⅱ】【微分法と積分法】極大極小の条件1 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)=x³+ax²+bx+cについて,次の問に答えよ。
(1)x=1で極大となるための条件を求めよ。
(2)x=-2で極小となるための条件を求めよ。
この動画を見る
関数f(x)=x³+ax²+bx+cについて,次の問に答えよ。
(1)x=1で極大となるための条件を求めよ。
(2)x=-2で極小となるための条件を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線7 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの曲線y=x²,y=-(x-2)²の共通接線の方程式を求めよ。
この動画を見る
2つの曲線y=x²,y=-(x-2)²の共通接線の方程式を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線6 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの曲線y=x²+2,y=x²+ax+3の交点をPとする。Pにおけるそれぞれの曲線の接線が垂直であるとき,定数aの値を求めよ。
この動画を見る
2つの曲線y=x²+2,y=x²+ax+3の交点をPとする。Pにおけるそれぞれの曲線の接線が垂直であるとき,定数aの値を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線5 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)曲線y=x³+ax+1が直線y=2x-1に接するとき,定数aの値を求めよ。
(2)曲線y=x³+x²と放物線y=x²+ax+16は,ともにある点Pを通り,Pにおいて共通の接線を持つ。このとき、定数aの値と接線の方程式を求めよ。
この動画を見る
(1)曲線y=x³+ax+1が直線y=2x-1に接するとき,定数aの値を求めよ。
(2)曲線y=x³+x²と放物線y=x²+ax+16は,ともにある点Pを通り,Pにおいて共通の接線を持つ。このとき、定数aの値と接線の方程式を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線4 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=2x²-4x+3上の点A(0,3)を通り,点Aにおける曲線の接線に垂直な直線の方程式を求めよ。
この動画を見る
曲線y=2x²-4x+3上の点A(0,3)を通り,点Aにおける曲線の接線に垂直な直線の方程式を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線3 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=-x³+4x上の点(-2,0)における接線が,この曲線と交わるもう1つの点のx座標を求めよ。
この動画を見る
曲線y=-x³+4x上の点(-2,0)における接線が,この曲線と交わるもう1つの点のx座標を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線2 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=x³+3x²-6 について,傾きが9である接線の方程式を求めよ。
この動画を見る
曲線y=x³+3x²-6 について,傾きが9である接線の方程式を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線1 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線に,与えられた点から引いた接線の方程式と,接点の座標を求めよ。
(1) y=x²+3x+4 (0,0)
(2) y=x²-x+3 (1,-1)
(3) y=x³+2 (0,4)
この動画を見る
次の曲線に,与えられた点から引いた接線の方程式と,接点の座標を求めよ。
(1) y=x²+3x+4 (0,0)
(2) y=x²-x+3 (1,-1)
(3) y=x³+2 (0,4)
微分法と積分法 数Ⅱ 絶対値を含む関数の最大最小【マコちゃんねるがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)=│x(x-1)(x-2)│ (-1≦x≦3) の最大値,最小値を求めよ。
この動画を見る
関数f(x)=│x(x-1)(x-2)│ (-1≦x≦3) の最大値,最小値を求めよ。
微分法と積分法 数Ⅱ 複合関数の最大最小【マコちゃんねるがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
x+3y=9,x≧0,y≧0のとき,x²yの最大値,最小値を求めたい。
(1) x²yをxだけの式で表せ。
(2) xの取り得る範囲を求めよ。
(3) x²yの最大値と最小値と,そのときのx,yの値を求めよ。
この動画を見る
x+3y=9,x≧0,y≧0のとき,x²yの最大値,最小値を求めたい。
(1) x²yをxだけの式で表せ。
(2) xの取り得る範囲を求めよ。
(3) x²yの最大値と最小値と,そのときのx,yの値を求めよ。
微分法と積分法 数Ⅱ 最大最小を利用した関数の決定2【マコちゃんねるがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,bは定数で、a>0とする。関数f(x)=ax⁴-4ax³+b (1≦x≦4) の最大値が9、最小値がー18になるように,定数a,bの値を定めよ。
この動画を見る
a,bは定数で、a>0とする。関数f(x)=ax⁴-4ax³+b (1≦x≦4) の最大値が9、最小値がー18になるように,定数a,bの値を定めよ。
微分法と積分法 数Ⅱ 最大最小を利用した関数の決定【マコちゃんねるがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,bは定数で、a<0とする。関数f(x)=ax³-3ax²+b (1≦x≦3) の最大値が10,最小値が-2になるように,定数a,bの値を定めよ。
この動画を見る
a,bは定数で、a<0とする。関数f(x)=ax³-3ax²+b (1≦x≦3) の最大値が10,最小値が-2になるように,定数a,bの値を定めよ。
大学入試問題#902「いやーこれはしんどかった」 #東京理科大学(2010)

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
点 は を満たしているとき
の最大値と最小値を求めよ。
出典:2010年東京理科大学
この動画を見る
点
出典:2010年東京理科大学
福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
, , を実数とする。関数 = + + +17 は = で極大値、 = で極小値をとり、 =-17 を満たすとする。
(1) , , の値、および の極大値 、極大値 を、それぞれ求めよ。
(2)(1)で求めた , および0≦ ≦5 を満たす実数 に対して、区間0≦ ≦ における| |の最大値を とする。 の値について場合分けをして、それぞれの場合に を求めよ。
(3)(2)で求めた に対して、定積分 = を求めよ。
この動画を見る
(1)
(2)(1)で求めた
(3)(2)で求めた
福田の数学〜九州大学2024年理系第1問〜空間における三角形の面積の最大値

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#九州大学
指導講師:
福田次郎
問題文全文(内容文):
を実数とし、座標空間内の3点P(-1,1,-1), Q(1,1,1), R( , , )を考える。以下の問いに答えよ。
(1) ≠-1, ≠1 のとき、3点P,Q,Rは一直線上にないことを示せ。
(2) が-1< <1 の範囲を動くとき、三角形PQRの面積の最大値を求めよ。
この動画を見る
(1)
(2)
福田の数学〜神戸大学2024年理系第2問〜放物線と2接線た作る三角形の重心の軌跡

単元:
#数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#面積、体積#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
, , は実数で、 ≠0とする。放物線 と直線 , をそれぞれ
: = + +
: = +3
: = +3
で定める。 , がともに と接するとき、以下の問いに答えよ。
(1) を求めよ。 を を用いて表せ。
(2) が 軸と異なる2点で交わるとき、 のとりうる値の範囲を求めよ。
(3) と の接点をP、 と の接点をQ、放物線 の頂点をRとする。 が(2)の条件を満たしながら動くとき、 の重心Gの軌跡を求めよ。
この動画を見る
で定める。
(1)
(2)
(3)
福田の数学〜早稲田大学2024年理工学部第1問〜円の接線で出来る図形の面積の最小

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
円 : + =1 に接する直線で、 切片、 切片がともに正であるものを とする。 と と 軸により囲まれた部分の面積を 、 と と 軸により囲まれた部分の面積を とする。 + が最小となるとき、 - の値を求めよ。
この動画を見る
福田の数学〜早稲田大学2024年人間科学部第4問〜関数の増減と接線の傾きの長さ

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
= + + + が =-2 で極値をとり、その値が1であるとき、定数 , の値は = , = である。このとき、曲線 = 上の点 における接線の傾きは = のとき、最小値 をとる。
この動画を見る
福田のおもしろ数学126〜条件付き最大値の問題

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正の数 , が - + =0 を満たして変わるとき、 の最大値を求めよ。
この動画を見る
正の数
【短時間でポイントチェック!!】3次方程式の解の個数〔現役講師解説、数学〕

【短時間でポイントチェック!!】3次関数の最大・最小〔現役講師解説、数学〕

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
【短時間でポイントチェック!!】
3次関数の最大・最小を解説します!
この動画を見る
【短時間でポイントチェック!!】
3次関数の最大・最小を解説します!
【短時間でポイントチェック!!】3次関数の増減〔現役講師解説、数学〕

微分の基本問題(落とし穴注意)

【演習!】微分で解く文字が含まれる関数について解説しました!【数学III】

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
問 次の関数が で極大値 をとるとき の値と極小値を求めよ
この動画を見る
問 次の関数が