接線と増減表・最大値・最小値
微分でも解けるけど・・・【数学 入試問題】【慶應義塾大学 改題】
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$ f(x)=x(x-1)(x-3)(x-4)$の$0≦x≦4$の範囲における最大値と最小値、およびそれらの値を取るときの$x$の値を求めよ。
慶應義塾大改題過去問
この動画を見る
関数$ f(x)=x(x-1)(x-3)(x-4)$の$0≦x≦4$の範囲における最大値と最小値、およびそれらの値を取るときの$x$の値を求めよ。
慶應義塾大改題過去問
福田の数学〜九州大学2022年文系第1問〜絶対値の付いた放物線と直線で囲まれた面積
単元:
#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ aを-3 \lt a \lt 13を満たす実数とし、次の曲線Cと直線lが接しているとする。\\
C:y=|x^2+(3-a)x-3a|, l:y=-x+13\\
以下の問いに答えよ。\\
(1)aの値を求めよ。\\
(2)曲線Cと直線lで囲まれた2つの図形のうち、点(a,0)が境界線上にある図形の面積を求めよ。
\end{eqnarray}
2022九州大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ aを-3 \lt a \lt 13を満たす実数とし、次の曲線Cと直線lが接しているとする。\\
C:y=|x^2+(3-a)x-3a|, l:y=-x+13\\
以下の問いに答えよ。\\
(1)aの値を求めよ。\\
(2)曲線Cと直線lで囲まれた2つの図形のうち、点(a,0)が境界線上にある図形の面積を求めよ。
\end{eqnarray}
2022九州大学文系過去問
福田の数学〜大阪大学2022年文系第3問〜6分の1公式の証明と面積の最小
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)実数\alpha,\betaに対し、\\
\\
\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}\\
\\
が成り立つことを示せ。\\
(2)a,bをb \gt a^2を満たす定数とし、座標平面に点A(a,b)をとる。さらに、\\
点Aを通り、傾きがkの直線をlとし、直線lと放物線y=x^2で囲まれた部分の面積を\\
S(k)とする。kが実数全体を動くとき、S(k)の最小値を求めよ。
\end{eqnarray}
2022大阪大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)実数\alpha,\betaに対し、\\
\\
\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}\\
\\
が成り立つことを示せ。\\
(2)a,bをb \gt a^2を満たす定数とし、座標平面に点A(a,b)をとる。さらに、\\
点Aを通り、傾きがkの直線をlとし、直線lと放物線y=x^2で囲まれた部分の面積を\\
S(k)とする。kが実数全体を動くとき、S(k)の最小値を求めよ。
\end{eqnarray}
2022大阪大学文系過去問
福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ aを実数とし、実数xの関数f(x)=(x^2+3x+a)(x+1)^2を考える。\\
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。\\
(2)a \lt 2のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる\\
xの値を\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)とする。f(\alpha_1) \lt f(\alpha_2)を示せ。\\
(3)f(x)がx \lt \betaにおいて単調減少し、かつ、x=\betaにおいて最小値をとるとする。\\
このとき、aのとりうる値の範囲を求めよ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{2}}}\ aを実数とし、実数xの関数f(x)=(x^2+3x+a)(x+1)^2を考える。\\
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。\\
(2)a \lt 2のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる\\
xの値を\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)とする。f(\alpha_1) \lt f(\alpha_2)を示せ。\\
(3)f(x)がx \lt \betaにおいて単調減少し、かつ、x=\betaにおいて最小値をとるとする。\\
このとき、aのとりうる値の範囲を求めよ。
\end{eqnarray}
2022東北大学理系過去問
福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ y=x^3-xにより定まる座標平面上の曲線をCとする。C上の点P(\alpha,\alpha^3-\alpha)を通り、\\
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。\\
(1)\alphaのとりうる値の範囲を求めよ。\\
(2)Cとlの点P以外の2つの交点のx座標を\beta,\gammaとする。ただし\beta \lt \gammaとする。\\
\beta^2+\beta\gamma+\gamma^2-1≠0 となることを示せ。\\
(3)(2)の\beta,\gammaを用いて、\\
u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}\\
と定める。このとき、uの取りうる値の範囲を求めよ。
\end{eqnarray}
2022東京大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{2}}}\ y=x^3-xにより定まる座標平面上の曲線をCとする。C上の点P(\alpha,\alpha^3-\alpha)を通り、\\
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。\\
(1)\alphaのとりうる値の範囲を求めよ。\\
(2)Cとlの点P以外の2つの交点のx座標を\beta,\gammaとする。ただし\beta \lt \gammaとする。\\
\beta^2+\beta\gamma+\gamma^2-1≠0 となることを示せ。\\
(3)(2)の\beta,\gammaを用いて、\\
u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}\\
と定める。このとき、uの取りうる値の範囲を求めよ。
\end{eqnarray}
2022東京大学文系過去問
福田の数学〜京都大学2022年理系第4問〜四面体に関する証明と線分の長さの最小
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 四面体OABCが\\
OA=4, OB=AB=BC=3, OC=AC=2\sqrt3\\
を満たしているとする。Pを辺BC上の点とし、\triangle OAPの重心をGとする。\\
このとき、次の各問いに答えよ。\\
(1)\overrightarrow{ PG } ∟ \overrightarrow{ OA }を示せ。\\
(2)Pが辺BC上を動くとき、PGの最小値を求めよ。
\end{eqnarray}
2022京都大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ 四面体OABCが\\
OA=4, OB=AB=BC=3, OC=AC=2\sqrt3\\
を満たしているとする。Pを辺BC上の点とし、\triangle OAPの重心をGとする。\\
このとき、次の各問いに答えよ。\\
(1)\overrightarrow{ PG } ∟ \overrightarrow{ OA }を示せ。\\
(2)Pが辺BC上を動くとき、PGの最小値を求めよ。
\end{eqnarray}
2022京都大学理系過去問
福田の入試問題解説〜東京大学2022年理系第1問〜最小値の存在と定積分の計算
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 次の関数f(x)を考える。\\
f(x)=(\cos x)\log(\cos x)-\cos x+\int_0^x(\cos t)\log(\cos t)dt (0 \leqq x \lt \frac{\pi}{2})\\
(1)f(x)は区間0 \leqq x \lt \frac{\pi}{2}において最小値を持つことを示せ。\\
(2)f(x)は区間0 \leqq x \lt \frac{\pi}{2}における最小値を求めよ。
\end{eqnarray}
2022東京大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ 次の関数f(x)を考える。\\
f(x)=(\cos x)\log(\cos x)-\cos x+\int_0^x(\cos t)\log(\cos t)dt (0 \leqq x \lt \frac{\pi}{2})\\
(1)f(x)は区間0 \leqq x \lt \frac{\pi}{2}において最小値を持つことを示せ。\\
(2)f(x)は区間0 \leqq x \lt \frac{\pi}{2}における最小値を求めよ。
\end{eqnarray}
2022東京大学理系過去問
福田の数学〜東京慈恵会医科大学2022年医学部第2問〜微分可能性と最大値と体積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 実数aは正の定数とする。実数全体で定義された関数f(x)=\frac{|x+a|}{\sqrt{x^2+1}}について、\\
\\
次の問いに答えよ。\\
(1)f(x)がx=-aで微分可能であるかどうか調べよ。\\
(2)f(x)の最大値が\sqrt2となるように、定数aの値を定めよ。\\
(3)定数aは(2)で定めた値とする。y=f(x)のグラフとx軸およびy軸で囲まれた部分\\
をx軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 実数aは正の定数とする。実数全体で定義された関数f(x)=\frac{|x+a|}{\sqrt{x^2+1}}について、\\
\\
次の問いに答えよ。\\
(1)f(x)がx=-aで微分可能であるかどうか調べよ。\\
(2)f(x)の最大値が\sqrt2となるように、定数aの値を定めよ。\\
(3)定数aは(2)で定めた値とする。y=f(x)のグラフとx軸およびy軸で囲まれた部分\\
をx軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}
2022東京慈恵会医科大学医学部過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2。微分積分の問題。
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#面積、体積#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
[1]aを実数とし、f(x)=x^3-6ax+16\\
(1)y=f(x)のグラフの概形は\\
a=0のとき、\boxed{\ \ ア\ \ }\\
a \gt 0のとき、\boxed{\ \ イ\ \ }\\
である。\\
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }については、最も適当なものを、次の⓪~⑤のうちから\\
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
(※選択肢は動画参照)\\
\\
\\
(2)a \gt 0とし、pを実数とする。座標平面上の曲線y=f(x)と直線y=p\\
が3個の共有点をもつようなpの値の範囲は\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }\\
である。\\
p=\boxed{\ \ ウ\ \ }のとき、曲線y=f(x)と直線y=pは2個の共有点をもつ。\\
それらのx座標をq,r(q \lt r)とする。曲線y=f(x)と直線y=p\\
が点(r,p)で接することに注意すると\\
q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}\\
と表せる。\\
\\
\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪2\sqrt2a^{\frac{3}{2}}+16 ①-2\sqrt2a^{\frac{3}{2}}+16\\
②4\sqrt2a^{\frac{3}{2}}+16 ③-4\sqrt2a^{\frac{3}{2}}+16\\
④8\sqrt2a^{\frac{3}{2}}+16 ⑤-8\sqrt2a^{\frac{3}{2}}+16\\
\\
(3)方程式f(x)=0の異なる実数解の個数をnとする。次の⓪~⑤のうち、\\
正しいものは\boxed{\ \ ケ\ \ }と\boxed{\ \ コ\ \ }である。\\
\\
\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }の解答群(解答の順序は問わない。)\\
\\
⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1\\
②n=2ならばa \lt 0 ③a \lt 0ならばn=2\\
④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3\\
\\
\\
[2]b \gt 0とし、g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2とおく。\\
座標平面上の曲線y=g(x)をC_1, 曲線y=h(x)をC_2とする。\\
\\
\\
C_1とC_2は2点で交わる。これらの交点のx座標をそれぞれ\alpha,\beta\\
(\alpha \lt \beta)とすると、\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }である。\\
\alpha \leqq x \leqq \betaの範囲でC_1とC_2で囲まれた図形の面積をSとする。また、\\
t \gt \betaとし、\beta \leqq x \leqq tの範囲でC_1とC_2および直線x=tで囲まれた図形の\\
面積をTとする。\\
このとき\\
S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx\\
T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx\\
S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx\\
であるので\\
S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)\\
が得られる。\\
したがって、S=Tとなるのはt=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ bのときである。\\
\\
\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}\\
②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}\\
④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}\\
⑥2g(x) ⑦2h(x)
\end{eqnarray}
2022共通テスト数学過去問
この動画を見る
\begin{eqnarray}
[1]aを実数とし、f(x)=x^3-6ax+16\\
(1)y=f(x)のグラフの概形は\\
a=0のとき、\boxed{\ \ ア\ \ }\\
a \gt 0のとき、\boxed{\ \ イ\ \ }\\
である。\\
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }については、最も適当なものを、次の⓪~⑤のうちから\\
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。\\
(※選択肢は動画参照)\\
\\
\\
(2)a \gt 0とし、pを実数とする。座標平面上の曲線y=f(x)と直線y=p\\
が3個の共有点をもつようなpの値の範囲は\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }\\
である。\\
p=\boxed{\ \ ウ\ \ }のとき、曲線y=f(x)と直線y=pは2個の共有点をもつ。\\
それらのx座標をq,r(q \lt r)とする。曲線y=f(x)と直線y=p\\
が点(r,p)で接することに注意すると\\
q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}\\
と表せる。\\
\\
\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪2\sqrt2a^{\frac{3}{2}}+16 ①-2\sqrt2a^{\frac{3}{2}}+16\\
②4\sqrt2a^{\frac{3}{2}}+16 ③-4\sqrt2a^{\frac{3}{2}}+16\\
④8\sqrt2a^{\frac{3}{2}}+16 ⑤-8\sqrt2a^{\frac{3}{2}}+16\\
\\
(3)方程式f(x)=0の異なる実数解の個数をnとする。次の⓪~⑤のうち、\\
正しいものは\boxed{\ \ ケ\ \ }と\boxed{\ \ コ\ \ }である。\\
\\
\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }の解答群(解答の順序は問わない。)\\
\\
⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1\\
②n=2ならばa \lt 0 ③a \lt 0ならばn=2\\
④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3\\
\\
\\
[2]b \gt 0とし、g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2とおく。\\
座標平面上の曲線y=g(x)をC_1, 曲線y=h(x)をC_2とする。\\
\\
\\
C_1とC_2は2点で交わる。これらの交点のx座標をそれぞれ\alpha,\beta\\
(\alpha \lt \beta)とすると、\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }である。\\
\alpha \leqq x \leqq \betaの範囲でC_1とC_2で囲まれた図形の面積をSとする。また、\\
t \gt \betaとし、\beta \leqq x \leqq tの範囲でC_1とC_2および直線x=tで囲まれた図形の\\
面積をTとする。\\
このとき\\
S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx\\
T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx\\
S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx\\
であるので\\
S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)\\
が得られる。\\
したがって、S=Tとなるのはt=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ bのときである。\\
\\
\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}\\
②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}\\
④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}\\
⑥2g(x) ⑦2h(x)
\end{eqnarray}
2022共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)座標平面上で、次の3つの3次関数のグラフについて考える。\\
y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤\\
y=5x^3-x^2+3x+5 \ldots⑥\\
④,⑤,⑥の3次関数のグラフには次の共通点がある。\\
共通点:・y軸との交点のy座標は\boxed{\ \ ソ\ \ } である。\\
・y軸との交点における接線の方程式は y=\boxed{\ \ タ\ \ }\ x+\boxed{\ \ チ\ \ } である。\\
\\
a,b,c,dを0でない実数とする。\\
曲線y=ax^3+bx^2+cx+d上の点(0, \boxed{\ \ ツ\ \ })における接線の方程式は\\
y=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ } である。\\
次にf(x)=ax^3+bx^2+cx+d, g(x)=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }とし、\\
f(x)-g(x)について考える。\\
h(x)=f(x)-g(x)とおく。a,b,c,dが正の実数であるとき、y=h(x)のグラフ\\
の概形は\boxed{\ \ ナ\ \ }である。\\
\\
(※\boxed{\ \ ナ\ \ }の解答群は動画参照)\\
y=f(x)のグラフとy=g(x)のグラフの共有点のx座標は\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }である。\\
また、xが\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }の間を動くとき、\\
|f(x)-g(x)|の値が最大となるのは、x=\frac{\boxed{\ \ ハヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }}のときである。
\end{eqnarray}
2021共通テスト数学過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} (2)座標平面上で、次の3つの3次関数のグラフについて考える。\\
y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤\\
y=5x^3-x^2+3x+5 \ldots⑥\\
④,⑤,⑥の3次関数のグラフには次の共通点がある。\\
共通点:・y軸との交点のy座標は\boxed{\ \ ソ\ \ } である。\\
・y軸との交点における接線の方程式は y=\boxed{\ \ タ\ \ }\ x+\boxed{\ \ チ\ \ } である。\\
\\
a,b,c,dを0でない実数とする。\\
曲線y=ax^3+bx^2+cx+d上の点(0, \boxed{\ \ ツ\ \ })における接線の方程式は\\
y=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ } である。\\
次にf(x)=ax^3+bx^2+cx+d, g(x)=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }とし、\\
f(x)-g(x)について考える。\\
h(x)=f(x)-g(x)とおく。a,b,c,dが正の実数であるとき、y=h(x)のグラフ\\
の概形は\boxed{\ \ ナ\ \ }である。\\
\\
(※\boxed{\ \ ナ\ \ }の解答群は動画参照)\\
y=f(x)のグラフとy=g(x)のグラフの共有点のx座標は\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }である。\\
また、xが\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }の間を動くとき、\\
|f(x)-g(x)|の値が最大となるのは、x=\frac{\boxed{\ \ ハヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }}のときである。
\end{eqnarray}
2021共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上で、次の二つの2次関数のグラフについて考える。\\
\\
y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②\\
\\
①、②の2次関数のグラフには次の共通点がある。\\
\\
共通点:・y軸との交点のy座標は\boxed{\ \ ア\ \ } である。\\
・y軸との交点における接線の方程式はy=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ } である。\\
\\
次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が\\
y=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ }となるものは\\
\boxed{\ \ エ\ \ }である。\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪y=3x^2-2x-3 ①y=-3x^2+2x-3 ②y=2x^2+2x-3\\
③y=2x^2-2x+3 ④y=-x^2+2x+3 ⑤y=-x^2-2x+3\\
\\
a,b,cを0でない実数とする。\\
曲線y=ax^2+bx+c上の点(0,\boxed{\ \ オ\ \ })における接線をlとすると、\\
その方程式はy=\boxed{\ \ カ\ \ }\ x+\boxed{\ \ キ\ \ } である。\\
\\
直線lとx軸との交点のx座標は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}である。\\
\\
a,b,cが正の実数であるとき、曲線y=ax^2+bx+cと\\
直線lおよび直線x=\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}で囲まれた図形の\\
面積をSとするとS=\frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }b^{\boxed{ス}}} \ldots③ である。\\
\\
③において、a=1とし、Sの値が一定となるように正の実数b,cの値を変化させる。\\
このとき、bとcの関係を表すグラフの概形は\boxed{\ \ セ\ \ }である。\\
(※\boxed{\ \ セ\ \ }の選択肢は動画参照)
\end{eqnarray}
2022共通テスト数学過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上で、次の二つの2次関数のグラフについて考える。\\
\\
y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②\\
\\
①、②の2次関数のグラフには次の共通点がある。\\
\\
共通点:・y軸との交点のy座標は\boxed{\ \ ア\ \ } である。\\
・y軸との交点における接線の方程式はy=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ } である。\\
\\
次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が\\
y=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ }となるものは\\
\boxed{\ \ エ\ \ }である。\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪y=3x^2-2x-3 ①y=-3x^2+2x-3 ②y=2x^2+2x-3\\
③y=2x^2-2x+3 ④y=-x^2+2x+3 ⑤y=-x^2-2x+3\\
\\
a,b,cを0でない実数とする。\\
曲線y=ax^2+bx+c上の点(0,\boxed{\ \ オ\ \ })における接線をlとすると、\\
その方程式はy=\boxed{\ \ カ\ \ }\ x+\boxed{\ \ キ\ \ } である。\\
\\
直線lとx軸との交点のx座標は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}である。\\
\\
a,b,cが正の実数であるとき、曲線y=ax^2+bx+cと\\
直線lおよび直線x=\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}で囲まれた図形の\\
面積をSとするとS=\frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }b^{\boxed{ス}}} \ldots③ である。\\
\\
③において、a=1とし、Sの値が一定となるように正の実数b,cの値を変化させる。\\
このとき、bとcの関係を表すグラフの概形は\boxed{\ \ セ\ \ }である。\\
(※\boxed{\ \ セ\ \ }の選択肢は動画参照)
\end{eqnarray}
2022共通テスト数学過去問
【ゆっくり丁寧に】数学Ⅱ・微分 3次関数のグラフの書き方
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数のグラフをかけ。
(1)
$y=-2x^3+6x^2+12$
(2)
$y=x^3-9x^2+27x+3$
この動画を見る
次の関数のグラフをかけ。
(1)
$y=-2x^3+6x^2+12$
(2)
$y=x^3-9x^2+27x+3$
【数学Ⅱ/微分】関数の増減(微分・増減表)
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数の増加・減少を調べよ。
(1)
$y=x^3-3x^2-9x+2$
(2)
$y=x^3-3x^2+14x-4$
この動画を見る
次の関数の増加・減少を調べよ。
(1)
$y=x^3-3x^2-9x+2$
(2)
$y=x^3-3x^2+14x-4$
【数学Ⅱ/微分】接線の方程式②
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
点$(-1,-4)$から、曲線$y=x^2-1$に引いた接線の方程式を求めよ。
この動画を見る
点$(-1,-4)$から、曲線$y=x^2-1$に引いた接線の方程式を求めよ。
【数学Ⅱ/微分】接線の方程式①
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の接線の方程式を求めよ。
(1)
曲線$y=x^3-2x^2+x+4$上の$x$座標が2である点における接線
(2)
曲線$y=x^2-3x$について、傾きが$3$である接線
この動画を見る
次の接線の方程式を求めよ。
(1)
曲線$y=x^3-2x^2+x+4$上の$x$座標が2である点における接線
(2)
曲線$y=x^2-3x$について、傾きが$3$である接線
福田のわかった数学〜高校3年生理系084〜グラフを描こう(6)陰関数のグラフ
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(6)\hspace{160pt}\\
y^2=x^2(x+1) のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(6)\hspace{160pt}\\
y^2=x^2(x+1) のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
福田のわかった数学〜高校3年生理系083〜グラフを描こう(5)ルート混じりのグラフ
単元:
#数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(5)\\
y=x^3\sqrt{1-x^2} のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(5)\\
y=x^3\sqrt{1-x^2} のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数列#漸化式#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} nを0以上の整数とする。定積分\\
I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx\\
について、次の問(1)~(4)に答えよ。ただし、eは自然対数の底である。\\
(1)I_0, I_1の値をそれぞれ求めよ。\\
(2)I_{n+1}をI_nとnを用いて表せ。\\
(3)x \gt 0とする。関数f(x)=\frac{(\log x)^2}{x}\ の増減表を書け。\\
ただし、極値も増減表に記入すること。\\
(4)座標平面上の曲線\ y=\frac{(\log x)^2}{x}, x軸と直線x=eとで囲まれた図形を、\\
x軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}
2021立教大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} nを0以上の整数とする。定積分\\
I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx\\
について、次の問(1)~(4)に答えよ。ただし、eは自然対数の底である。\\
(1)I_0, I_1の値をそれぞれ求めよ。\\
(2)I_{n+1}をI_nとnを用いて表せ。\\
(3)x \gt 0とする。関数f(x)=\frac{(\log x)^2}{x}\ の増減表を書け。\\
ただし、極値も増減表に記入すること。\\
(4)座標平面上の曲線\ y=\frac{(\log x)^2}{x}, x軸と直線x=eとで囲まれた図形を、\\
x軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}
2021立教大学理工学部過去問
福田のわかった数学〜高校3年生理系082〜グラフを描こう(4)ルート混じりのグラフ
単元:
#数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(4)\hspace{180pt}\\
y=4x\sqrt x-3x^2+12x のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{III} グラフを描こう(4)\hspace{180pt}\\
y=4x\sqrt x-3x^2+12x のグラフを描け。ただし凹凸は調べなくてよい。
\end{eqnarray}
福田のわかった数学〜高校2年生061〜対称式と領域(3)
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 対称式と領域(3)\\
実数x,\ yがx^2+xy+y^2=6\ を\\
満たしながら動くとき\\
x^2y+xy^2-x^2-2xy-y^2+x+y\\
の取り得る値の範囲を求めよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{II} 対称式と領域(3)\\
実数x,\ yがx^2+xy+y^2=6\ を\\
満たしながら動くとき\\
x^2y+xy^2-x^2-2xy-y^2+x+y\\
の取り得る値の範囲を求めよ。
\end{eqnarray}
福田の数学〜上智大学2021年TEAP利用文系第2問〜放物線の接線と面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} xy平面において、放物線C:y=x^2と、互いに直交するCの2つの接線l,mを\\
考える。\\
(1)lが点(2,\ 4)を通るとき、mの方程式は\\
y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
であり、lとmの交点の座標は\\
(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})\\
である。\\
\\
(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}である。
\end{eqnarray}
2021上智大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} xy平面において、放物線C:y=x^2と、互いに直交するCの2つの接線l,mを\\
考える。\\
(1)lが点(2,\ 4)を通るとき、mの方程式は\\
y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}\\
であり、lとmの交点の座標は\\
(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})\\
である。\\
\\
(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}である。
\end{eqnarray}
2021上智大学文系過去問
福田の数学〜慶應義塾大学2021年看護医療学部第5問〜定積分で表された関数
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} dを実数の定数、f(t)を2次関数として、次の関数F(x)を考える。\\
F(x)=\int_d^xf(t)dt\\
(1)F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }\ である。\\
(2)F(x)がx=1で極大値5、x=2で極小値4をとるとき、\\
f(t)およびdを求めなさい。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}} dを実数の定数、f(t)を2次関数として、次の関数F(x)を考える。\\
F(x)=\int_d^xf(t)dt\\
(1)F(d)=\boxed{\ \ ヤ\ \ },\ F'(x)=\boxed{\ \ ユ\ \ }\ である。\\
(2)F(x)がx=1で極大値5、x=2で極小値4をとるとき、\\
f(t)およびdを求めなさい。
\end{eqnarray}
2021慶應義塾大学看護医療学部過去問
福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}
2021慶應義塾大学薬学部過去問
【数Ⅱ】微分法と積分法:2021年高3第1回数台全国模試 (文理共通)
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを実数とし、xの4次関数f(x)を$f(x)=3x^4-4(a+2)x^3+12ax^2+1$とする。次の問に答 えよ。
(1)f(x)が極大値をもつようなaの値の範囲を求めよ。
(2)(1)で求めた範囲 をaが動くとき、曲線y=f(x)において、f(x)が極大となる点の軌跡を求めよ。
この動画を見る
aを実数とし、xの4次関数f(x)を$f(x)=3x^4-4(a+2)x^3+12ax^2+1$とする。次の問に答 えよ。
(1)f(x)が極大値をもつようなaの値の範囲を求めよ。
(2)(1)で求めた範囲 をaが動くとき、曲線y=f(x)において、f(x)が極大となる点の軌跡を求めよ。
福田の数学〜慶應義塾大学2021年経済学部第6問〜3次関数の接線と面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、y=F(x)で\\
定まる曲線をCとする。\alpha \lt \betaを満たす実数\alpha,\ \betaに対して、C上の点A(\alpha,F(\alpha))\\
におけるCの接線をL_{\alpha}とするとき、CとL_{\alpha}とのA以外の共有点がB(\beta,F(\beta))\\
であるとする。さらに、BにおけるCの接線をL_{\beta}とのB以外の共有点を(\gamma,F(\gamma))\\
とする。\\
\\
(1)接線L_{\alpha}の方程式をy=l_{\alpha}(x)とし、G(x)=F(x)-l_{\alpha}(x)とおく。さらに、\\
曲線y=G(x)上の点(\beta,G(\beta))における接線の方程式をy=m(x)とする。G(x)\\
およびm(x)を、それぞれ\alpha,\betaを用いて因数分解された形に表せ。必要ならば\\
xの整式で表される関数p(x),q(x)とそれらの導関数に関して成り立つ公式\\
\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)\\
を用いてもよい。\\
\\
(2)接線L_{\beta}の方程式は(1)で定めたl_{\alpha}(x),\ m(x)を用いて、y=l_{\alpha}(x)+ m(x)で\\
与えられることを示せ。さらに、\gammaを\alpha,\betaを用いて表せ。\\
\\
(3)曲線CおよびL_{\beta}で囲まれた図形の面積をSとする。Sを\alpha,\betaを用いて表せ。\\
さらに\alpha,\betaが-1 \lt \alpha \lt 0かつ1 \lt \beta \lt 2を満たすとき、Sの取り得る値の\\
範囲を求めよ。必要ならばr \lt sを満たす実数r,sに対して成り立つ公式\\
\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4\\
を用いてもよい。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}} F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、y=F(x)で\\
定まる曲線をCとする。\alpha \lt \betaを満たす実数\alpha,\ \betaに対して、C上の点A(\alpha,F(\alpha))\\
におけるCの接線をL_{\alpha}とするとき、CとL_{\alpha}とのA以外の共有点がB(\beta,F(\beta))\\
であるとする。さらに、BにおけるCの接線をL_{\beta}とのB以外の共有点を(\gamma,F(\gamma))\\
とする。\\
\\
(1)接線L_{\alpha}の方程式をy=l_{\alpha}(x)とし、G(x)=F(x)-l_{\alpha}(x)とおく。さらに、\\
曲線y=G(x)上の点(\beta,G(\beta))における接線の方程式をy=m(x)とする。G(x)\\
およびm(x)を、それぞれ\alpha,\betaを用いて因数分解された形に表せ。必要ならば\\
xの整式で表される関数p(x),q(x)とそれらの導関数に関して成り立つ公式\\
\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)\\
を用いてもよい。\\
\\
(2)接線L_{\beta}の方程式は(1)で定めたl_{\alpha}(x),\ m(x)を用いて、y=l_{\alpha}(x)+ m(x)で\\
与えられることを示せ。さらに、\gammaを\alpha,\betaを用いて表せ。\\
\\
(3)曲線CおよびL_{\beta}で囲まれた図形の面積をSとする。Sを\alpha,\betaを用いて表せ。\\
さらに\alpha,\betaが-1 \lt \alpha \lt 0かつ1 \lt \beta \lt 2を満たすとき、Sの取り得る値の\\
範囲を求めよ。必要ならばr \lt sを満たす実数r,sに対して成り立つ公式\\
\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4\\
を用いてもよい。
\end{eqnarray}
2021慶應義塾大学経済学部過去問
共有点の個数
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
aは定数。放物線$y=x^2+a$と$y=4|x-1|-3$のグラフとの共有点の個数を求めよ。
この動画を見る
aは定数。放物線$y=x^2+a$と$y=4|x-1|-3$のグラフとの共有点の個数を求めよ。
【数Ⅱ】微分法と積分法:一橋大学1995年 直線の通過領域
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
tが$0\leqq t\leqq1$の範囲を動くとき、直線$y=3t^2x-2t^3$の通り得る点の存在範囲を求め、そ れを図示しよう。
この動画を見る
tが$0\leqq t\leqq1$の範囲を動くとき、直線$y=3t^2x-2t^3$の通り得る点の存在範囲を求め、そ れを図示しよう。
【数Ⅱ】微分法と積分法:入試頻出!領域の図示 3本の接線が引けるための条件
単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
接線の本数:曲線$f(x)=-x^3+3x^2$の接線のうち、点(2,a)を通るものの本数は、 定数aの値によってどのように変わるか調べよ。
この動画を見る
接線の本数:曲線$f(x)=-x^3+3x^2$の接線のうち、点(2,a)を通るものの本数は、 定数aの値によってどのように変わるか調べよ。
【数Ⅱ】 微分法と積分法:2021年高3第1回K塾記述模試
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)を次の式で定める。ただし、kは正の定数である。$f(x)=kx^3-4x^2+x+k^2$ 原点をOとする座標平面上において、曲線$C:y=f(x)$とy軸の交点をAとし、Aにお けるCの接線と垂直でAを通る直線をlとする。
(1)lの方程式を求めよ。
(2)Cとlが A以外に2点で交わるとする。このとき、kの値の範囲を求めよ。
(3)(2)のとき、CとlのA以外の2交点をP、Qとし、三角形OPQの面積をSとする。kが(2)で求めた範 囲を変化するとき、Sの最大値を求めよ。
この動画を見る
関数f(x)を次の式で定める。ただし、kは正の定数である。$f(x)=kx^3-4x^2+x+k^2$ 原点をOとする座標平面上において、曲線$C:y=f(x)$とy軸の交点をAとし、Aにお けるCの接線と垂直でAを通る直線をlとする。
(1)lの方程式を求めよ。
(2)Cとlが A以外に2点で交わるとする。このとき、kの値の範囲を求めよ。
(3)(2)のとき、CとlのA以外の2交点をP、Qとし、三角形OPQの面積をSとする。kが(2)で求めた範 囲を変化するとき、Sの最大値を求めよ。
福田のわかった数学〜高校2年生023〜円の外部から引いた接線の求め方
単元:
#数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円と接線
点$A(2,4)$から
円$C:(x+2)^2+(y-2)^2=10$
へ引いた接線の方程式を求めよ。
この動画を見る
数学$\textrm{II}$ 円と接線
点$A(2,4)$から
円$C:(x+2)^2+(y-2)^2=10$
へ引いた接線の方程式を求めよ。