微分法と積分法

【数Ⅱ】【微分法と積分法】方程式の解の個数8 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線C:y=x³+3x²について、次の問いに答えよ。
(1)C上の点P(t,t³+3t)におけるCの接線が点A(0,a)を通る時、等式2t³+3t²+a=0が成り立つことを示せ。
(2)Aを通るCの接線が3本存在するとき、aの値の範囲を求めよ。
この動画を見る
曲線C:y=x³+3x²について、次の問いに答えよ。
(1)C上の点P(t,t³+3t)におけるCの接線が点A(0,a)を通る時、等式2t³+3t²+a=0が成り立つことを示せ。
(2)Aを通るCの接線が3本存在するとき、aの値の範囲を求めよ。
【数Ⅱ】【微分法と積分法】方程式の解の個数7 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式x³-3ax+a=0が異なる3個の実数解をもつとき、定数aの値の範囲を求めよ。
この動画を見る
方程式x³-3ax+a=0が異なる3個の実数解をもつとき、定数aの値の範囲を求めよ。
【数Ⅱ】【微分法と積分法】方程式の解の個数6 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
4次方程式x⁴-4x³-2x²+12x-a=0が異なる4個の実数解を持ち、そのうち2個は正、残りの2個は負であるとき、定数aの値の範囲を求めよ。
この動画を見る
4次方程式x⁴-4x³-2x²+12x-a=0が異なる4個の実数解を持ち、そのうち2個は正、残りの2個は負であるとき、定数aの値の範囲を求めよ。
【数Ⅱ】【微分法と積分法】極大極小の条件2 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)=x⁴+4x³+2ax²が極大値と極小値を持つように,定数aの値の範囲を定めよ。
この動画を見る
関数f(x)=x⁴+4x³+2ax²が極大値と極小値を持つように,定数aの値の範囲を定めよ。
【数Ⅱ】【微分法と積分法】極大極小の条件1 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)=x³+ax²+bx+cについて,次の問に答えよ。
(1)x=1で極大となるための条件を求めよ。
(2)x=-2で極小となるための条件を求めよ。
この動画を見る
関数f(x)=x³+ax²+bx+cについて,次の問に答えよ。
(1)x=1で極大となるための条件を求めよ。
(2)x=-2で極小となるための条件を求めよ。
【数Ⅱ】【微分法と積分法】極値の場合分け ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aは定数とする。次の各場合に、関数y=x(x-a)²の極値を調べよ。
(1)a<0
(2)a=0
(3)a>0
この動画を見る
aは定数とする。次の各場合に、関数y=x(x-a)²の極値を調べよ。
(1)a<0
(2)a=0
(3)a>0
【数Ⅱ】【微分法と積分法】極値を持つ条件 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件に適するように、定数aの値の範囲を、それぞれ定めよ。
(1)関数 が極値をもつ。
(2)関数 が極値をもたない。
この動画を見る
次の条件に適するように、定数aの値の範囲を、それぞれ定めよ。
(1)関数
(2)関数
【数Ⅱ】【微分法と積分法】微分と接線7 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの曲線y=x²,y=-(x-2)²の共通接線の方程式を求めよ。
この動画を見る
2つの曲線y=x²,y=-(x-2)²の共通接線の方程式を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線6 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの曲線y=x²+2,y=x²+ax+3の交点をPとする。Pにおけるそれぞれの曲線の接線が垂直であるとき,定数aの値を求めよ。
この動画を見る
2つの曲線y=x²+2,y=x²+ax+3の交点をPとする。Pにおけるそれぞれの曲線の接線が垂直であるとき,定数aの値を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線5 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)曲線y=x³+ax+1が直線y=2x-1に接するとき,定数aの値を求めよ。
(2)曲線y=x³+x²と放物線y=x²+ax+16は,ともにある点Pを通り,Pにおいて共通の接線を持つ。このとき、定数aの値と接線の方程式を求めよ。
この動画を見る
(1)曲線y=x³+ax+1が直線y=2x-1に接するとき,定数aの値を求めよ。
(2)曲線y=x³+x²と放物線y=x²+ax+16は,ともにある点Pを通り,Pにおいて共通の接線を持つ。このとき、定数aの値と接線の方程式を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線4 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=2x²-4x+3上の点A(0,3)を通り,点Aにおける曲線の接線に垂直な直線の方程式を求めよ。
この動画を見る
曲線y=2x²-4x+3上の点A(0,3)を通り,点Aにおける曲線の接線に垂直な直線の方程式を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線3 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=-x³+4x上の点(-2,0)における接線が,この曲線と交わるもう1つの点のx座標を求めよ。
この動画を見る
曲線y=-x³+4x上の点(-2,0)における接線が,この曲線と交わるもう1つの点のx座標を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線2 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=x³+3x²-6 について,傾きが9である接線の方程式を求めよ。
この動画を見る
曲線y=x³+3x²-6 について,傾きが9である接線の方程式を求めよ。
【数Ⅱ】【微分法と積分法】微分と接線1 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線に,与えられた点から引いた接線の方程式と,接点の座標を求めよ。
(1) y=x²+3x+4 (0,0)
(2) y=x²-x+3 (1,-1)
(3) y=x³+2 (0,4)
この動画を見る
次の曲線に,与えられた点から引いた接線の方程式と,接点の座標を求めよ。
(1) y=x²+3x+4 (0,0)
(2) y=x²-x+3 (1,-1)
(3) y=x³+2 (0,4)
【数Ⅱ】【微分法と積分法】微分の基本6 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
は0ではない定数とする。次の等式を満たす2次関数 を求めよ。
この動画を見る
【数Ⅱ】【微分法と積分法】微分の基本5 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を求めよ。
(1) 等式 を満たす2次関数
(2) 等式 を満たす3次関数
この動画を見る
次の関数を求めよ。
(1) 等式
(2) 等式
【数Ⅱ】【微分法と積分法】微分の基本4 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
1辺の長さ の正四面体がある。
(1)正四面体の表面積を とするとき, を の関数で表せ。
(2) が変化するとき, の における微分係数を求めよ。
この動画を見る
1辺の長さ
(1)正四面体の表面積を
(2)
【数Ⅱ】【微分法と積分法】微分の基本3 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
( は正の整数) であることを用いて、次の関数を微分せよ。
この動画を見る
【数Ⅱ】【微分法と積分法】微分の基本2 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
とする。
関数 のグラフ上の2点 を結ぶ直線の傾きが、 における微分係数 に等しい。
を で表せ。
この動画を見る
関数
【数Ⅱ】【微分法と積分法】微分の基本1 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数 について、 における微分係数 を求めよ。また、 が、 が から まで変化するときの平均変化率に一致するとき、 の値を求めよ。
この動画を見る
次の関数
【数Ⅱ】【微分法と積分法】極限の計算 ※問題文は概要欄

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)
(2)
(3)
(4)
この動画を見る
(1)
(2)
(3)
(4)
福田の数学〜過去の入試問題(期間限定)〜東京慈恵会医科大学医学部2020第2問〜関数列の極限

単元:
#大学入試過去問(数学)#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
を 以上の自然数の定数とする。 = , , ...に対して、関数 を
で定める。例えば = のとき
である。 とおくとき、次の問に答えよ。
のとき、不等式 が成り立つことを示せ。ただし、対数は自然対数とする。
を求めよ。
この動画を見る
で定める。例えば
である。
福田のおもしろ数学379〜関数の偶奇性の判定

単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
について正しい記述を以下から1つ選べ。
(a) 偶関数であるが奇関数ではない。
(b) 奇関数であるが偶関数ではない。
(c) 偶関数かつ奇関数である。
この動画を見る
(a) 偶関数であるが奇関数ではない。
(b) 奇関数であるが偶関数ではない。
(c) 偶関数かつ奇関数である。
微分法と積分法 数Ⅱ 絶対値を含む関数の最大最小【マコちゃんねるがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)=│x(x-1)(x-2)│ (-1≦x≦3) の最大値,最小値を求めよ。
この動画を見る
関数f(x)=│x(x-1)(x-2)│ (-1≦x≦3) の最大値,最小値を求めよ。
微分法と積分法 数Ⅱ 複合関数の最大最小【マコちゃんねるがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
x+3y=9,x≧0,y≧0のとき,x²yの最大値,最小値を求めたい。
(1) x²yをxだけの式で表せ。
(2) xの取り得る範囲を求めよ。
(3) x²yの最大値と最小値と,そのときのx,yの値を求めよ。
この動画を見る
x+3y=9,x≧0,y≧0のとき,x²yの最大値,最小値を求めたい。
(1) x²yをxだけの式で表せ。
(2) xの取り得る範囲を求めよ。
(3) x²yの最大値と最小値と,そのときのx,yの値を求めよ。
微分法と積分法 数Ⅱ 最大最小を利用した関数の決定2【マコちゃんねるがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,bは定数で、a>0とする。関数f(x)=ax⁴-4ax³+b (1≦x≦4) の最大値が9、最小値がー18になるように,定数a,bの値を定めよ。
この動画を見る
a,bは定数で、a>0とする。関数f(x)=ax⁴-4ax³+b (1≦x≦4) の最大値が9、最小値がー18になるように,定数a,bの値を定めよ。
微分法と積分法 数Ⅱ 最大最小を利用した関数の決定【マコちゃんねるがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,bは定数で、a<0とする。関数f(x)=ax³-3ax²+b (1≦x≦3) の最大値が10,最小値が-2になるように,定数a,bの値を定めよ。
この動画を見る
a,bは定数で、a<0とする。関数f(x)=ax³-3ax²+b (1≦x≦3) の最大値が10,最小値が-2になるように,定数a,bの値を定めよ。
#高知工科大学2024#定積分_25#元高校教員

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#高知工科大学
指導講師:
ますただ
問題文全文(内容文):
出典:2024年 高知工科大学
この動画を見る
出典:2024年 高知工科大学
#高専#不定積分_16#元高専教員

#高知工科大学2024#不定積分_23#元高校教員
