関数と極限 - 質問解決D.B.(データベース) - Page 8

関数と極限

【数Ⅲ】極限:3乗根を含む極限、3乗根の有理化:次の極限を求めよう。lim[x→0]{∛(1+x)-∛(1-x)}/x

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよう。
$\displaystyle \lim_{x\to 0}\dfrac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}$
この動画を見る 

【数Ⅲ】極限:3乗根を含む極限、3乗根の有理化

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよう。lim[x→0]{∛(1+x)-∛(1-x)}/x
この動画を見る 

福田のわかった数学〜高校3年生理系076〜平均値の定理(4)数列の極限の問題

アイキャッチ画像
単元: #数列#漸化式#関数と極限#微分とその応用#数列の極限#接線と法線・平均値の定理#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$平均値の定理(4)
微分可能な関数$f(x)$が$f(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}$を満たしている。
$a_{n+1}=f(a_n)$で定義される数列$\left\{a_n\right\}$について、
$\lim_{n \to \infty}a_n=1$であることを示せ。
この動画を見る 

福田のわかった数学〜高校3年生理系074〜平均値の定理(2)極限の問題

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 平均値の定理(2)
極限値
$\lim_{x \to 0}\frac{e^x-e^{\sin x}}{x-\sin x}$
を求めよ。
この動画を見る 

【数Ⅲ】 極限:r^nの極限を含むグラフの概形

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数の極限:$r^n$の極限:次の関数のグラフの概形をかき、関数の連続性を調べよう
$f(x)=\displaystyle \lim_{x\to\infty}\dfrac{x^{2n-1}+x+2}{x^{2n}+1}$
この動画を見る 

数学「大学入試良問集」【19−8 極限で定義された関数】を宇宙一わかりやすく

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正の数$x$に対して定義された次の関数$f(x)$を考える。
$f(x)=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{4x^{n+1}+ax^n+log\ x+1}{x^{n+2}+x^n+1}$
ここで、$a$は定数である。
このとき、次の各問いに答えよ。

(1)
極限計算により関数$f(x)$を求めると
$0 \lt x \lt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ア },f(1)=\fcolorbox{black}{ #fffff }{ イ },x \gt 1$のとき$f(x)=\fcolorbox{black}{ #fffff }{ ウ }$。

(2)
関数$f(x)$が$x=1$で連続になるときの$a$の値を求めよ。
以下、$a$はこの値とする。

(3)
関数$f(x)$の増減、極値および$f(x)=0$をみたす$x$の値を調べて、関数$f(x)$のグラフ$C$の概形を描け。

(4)
関数$f(x)$のグラフ$C$と直線$x=\sqrt{ 3 }$および$x$軸で囲まれる部分の面積を求めよ。
この動画を見る 

【数Ⅲ】極限:三角関数の合成の利用

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\dfrac{\pi}{4}}\dfrac{\sin x-\cos x}{x-\dfrac{\pi}{4}}$
この動画を見る 

【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin\left(\dfrac{\sin x}{\pi}\right)}{x}$
この動画を見る 

【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用2)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}\dfrac{\sin x}{x^0}$
この動画を見る 

【数Ⅲ】極限:三角関数と極限(sinx/x=1の利用1)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限値を求めよう。
$\displaystyle \lim_{x\to\infty}x\sin・\dfrac{1}{x}$
この動画を見る 

練習問題48 岡山大学2011 面積、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n \in IN,\ 0 \leqq x \leqq 1$
曲線$y=x^2(1-x)^n$と$x$軸で囲まれた図形の面積を$S_n$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\ S_k$を求めよ。

出典:2011年岡山大学 練習問題
この動画を見る 

福田の数学〜中央大学2021年理工学部第4問〜定積分と不等式、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$自然数$n$に対し,$f_n(x)=x^{-1+\frac{1}{n}}(x\gt 0)$とおく.
また,正の実数$a_n$は$\displaystyle \int_{1}^{a_n}f_n(x)dx=1$満たすものとする.次の問い 
答えよ.

(1)関数$f_n(x)$の不定積分を求めよ.

(2)$a_n$の値と極限$\displaystyle \lim_{n\to\infty}a_n$を求めよ.また,正の実数$b_n$が$\displaystyle \int_{1}^{b_n}f_{n+1}(x)dx=-1$を満たすとき,$b_n$の値と極限$\displaystyle \lim_{n\to\infty}b_n$を求めよ.

(3)2以上の自然数$k$に対して$\displaystyle \int_{k-1}^{k}f_n(x)dx \gt \dfrac{1}{k}$を示し,これを利用して$a_n\lt 4$を証明せよ.

(4)$\displaystyle \int_{1}^{a_n}f_{n+1}(x)dx\lt 1$を示し,これを利用して$a_n\lt a_{n+1}$を証明せよ.

2021中央大理工学部過去問
この動画を見る 

練習問題44 東京工業大学 極限値 数検1級 教員採用試験(数学)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }(\displaystyle \frac{{}_{ 3n } C_n}{{}_{ 2n } C_n})^\frac{1}{n}$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$

出典:東京工業大学 練習問題
この動画を見る 

【数学Ⅲ/微分】逆関数の微分

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
逆関数の微分法の公式を用いて、次の関数を微分せよ。

$y=x^{\frac{1}{5}}$
この動画を見る 

お茶の水女子大 3次関数と放物線

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3+(k+1)x^2+kx$と$y=x^2q$とが全ての実数$q$において
共有点がただ1つである$k$の範囲を求めよ.

2021お茶の水女子大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系055〜格子点の個数と極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 格子点の個数と極限
右図の斜線部分(※動画参照)に含まれる
格子点の総数を$a_n$とする。
$\lim_{n \to \infty}\frac{a_n}{n^2}$を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系050〜極限(50)連続と微分可能(1)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$
連続と微分可能(1)
$f(x)$が$x=a$で微分可能 $\Rightarrow f(x)$は$x=a$で連続
を示せ。また、逆が成り立たないことを示せ。
この動画を見る 

東京海洋大 3次関数の基本

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$と$y=ax+b$が相異なる3点で交わる$a,b$の条件を求めよ.

2021東京海洋大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系049〜極限(49)中間値の定理(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(3)
Aさんは300km離れた地点まで車でちょうど5時間かけて移動した。
このときこの300kmの中のどこか60kmの区間を
ちょうど1時間で通過したことを示せ。
この動画を見る 

福田のわかった数学〜高校3年生理系048〜極限(48)中間値の定理(2)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(2)
関数$f(x),g(x)$は区間[a,b]で連続でf(x)の最大値はg(x)の最大値よりも大きく、
f(x)の最小値はg(x)の最小値よりも小さい。このとき、方程式$f(x)=g(x)$は$a \leqq x \leqq b$
に実数解をもつことを示せ。
この動画を見る 

福田のわかった数学〜高校3年生理系047〜極限(47)中間値の定理(1)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 中間値の定理(1)
方程式$\sqrt x-2\log_3x=0$は、
$1 \lt x \lt 3$に実数解をもつことを示せ。
この動画を見る 

福田のわかった数学〜高校3年生理系046〜極限(46)関数の連続性(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 関数の連続性(3)
$f(x)=\left\{\begin{array}{1}
\displaystyle\frac{x^2}{|x|} (x≠0)\\
0  (x=0)\\
\end{array}\right.$
は、$x=0$で連続か、調べよ。
この動画を見る 

福田のわかった数学〜高校3年生理系045〜極限(45)関数の連続性(2)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系044〜極限(44)関数の連続性(1)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(1)\\
\\
f(x)=\lim_{n \to \infty}\frac{x^{2n}-x^{2n-1}+ax^2+bx}{x^{2n}+1}\\
\\
が連続関数となるようにaとbを定めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系043〜極限(43)有名な極限の証明(3)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(3)\\
\lim_{x \to \infty}\frac{\log x}{x}=0を既知として\\
\lim_{x \to +0}x\log x を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系042〜極限(42)有名な極限の証明(2)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(2)\\
\lim_{x \to \infty}xe^{-x}=0を既知として\\
\lim_{x \to \infty}\frac{\log x}{x} を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系041〜極限(41)有名な極限の証明(1)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(1)\\
(1)x \gt 0でe^x \gt 1+x+\frac{x^2}{2} を示せ。\\
\\
(2)\lim_{x \to \infty}xe^{-x} を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系040〜極限(40)関数の極限、色々な極限(10)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(10)\\
\lim_{x \to \infty}(2x+3)\sin(\log(x+3)-\log x)\\
を求めよ。
\end{eqnarray}
この動画を見る 

【17−9 自然対数の底と極限】を宇宙一わかりやすく「数学大学入試良問集」

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を2以上の整数とする。
平面上に$n+2$個の点$O,P_1,P_2・・・P_n$があり、次の2つの条件を満たしている。
①$\angle P_{k-1}OP_k=\displaystyle \frac{\pi}{n}(1 \leqq k \leqq n),\angle OP_{k-1}P_k=\angle OP_0P_1(2 \leqq k \leqq n)$

②線分$OP_0$の長さは1、線分$OP_1$の長さは$1+\displaystyle \frac{1}{n}$である。

線分$P_{k-1}P_k$の長さを$a_k$とし、$s_n=\displaystyle \sum_{k=1}^n a_k$とおくとき、$\displaystyle \lim_{ n \to \infty }s_n$を求めよ。
この動画を見る 

数学「大学入試良問集」【17−8 不等式とハサミウチの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
$h \gt 0$として、不等式$(1+h)^n \geqq 1+nh+\displaystyle \frac{n(n-1)}{2}h^2$がすべての自然数$n$について成り立つことを数学的帰納法を用いて説明せよ。

(2)
(1)の不等式を使って、$0 \lt x \lt 1$のとき、数列$\{nx^n\}$が$0$に収束することを示せ。

(3)
$0 \lt x \lt 1$のとき
無限級数$2x+4x^2+6x^3+・・・+2nx^n+・・・$の和を求めよ。
この動画を見る 
PAGE TOP