理数個別チャンネル
理数個別チャンネル
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【数A】【場合の数と確率】並び替え基本1 ※問題文は概要欄

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
・6個の数字1,2,3,4,5,6から異なる4種の数字を使って4桁の整数を作るとき、次のような整数は何個あるか。
(1)4300より大きい整数
(2)5000より大きい整数
・女子5人、男子3人が1列に並ぶとき、次の並び方は何通りあるか。
(1)女子5人が続いて並ぶ。
(2)女子5人、男子3人がそれぞれ続いて並ぶ。
(3)両端が男子である。
(4)どの男子も隣合わない。
・男子4人、女子4人が男女交互に1列に並ぶ方法は何通りあるか。
この動画を見る
・6個の数字1,2,3,4,5,6から異なる4種の数字を使って4桁の整数を作るとき、次のような整数は何個あるか。
(1)4300より大きい整数
(2)5000より大きい整数
・女子5人、男子3人が1列に並ぶとき、次の並び方は何通りあるか。
(1)女子5人が続いて並ぶ。
(2)女子5人、男子3人がそれぞれ続いて並ぶ。
(3)両端が男子である。
(4)どの男子も隣合わない。
・男子4人、女子4人が男女交互に1列に並ぶ方法は何通りあるか。
【数A】【場合の数と確率】組み合わせ考え方の基本 ※問題文は概要欄

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
・5人乗りの車に5人が乗車してドライブをするとき、乗り方は何通りあるか。次の各場合について求めよ。
(1)5人全員が運転免許を持っている場合
(2)5人のうち3人だけが運転免許を持っている場合
・6個の数字0,1,2,3,4,5を使ってできる、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないこととする。
(1)6桁の整数
(2)6桁の整数で5の倍数
・5個の数字0,1,2,3,4を使ってできる3桁の整数のうち、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないものとする。
(1)偶数
(2)3の倍数
この動画を見る
・5人乗りの車に5人が乗車してドライブをするとき、乗り方は何通りあるか。次の各場合について求めよ。
(1)5人全員が運転免許を持っている場合
(2)5人のうち3人だけが運転免許を持っている場合
・6個の数字0,1,2,3,4,5を使ってできる、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないこととする。
(1)6桁の整数
(2)6桁の整数で5の倍数
・5個の数字0,1,2,3,4を使ってできる3桁の整数のうち、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないものとする。
(1)偶数
(2)3の倍数
【小6算数手元解説】受験算数 円の中心も入れた三角形の数【問題文は概要欄】

単元:
#算数(中学受験)#場合の数#場合の数
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
理数個別チャンネル
問題文全文(内容文):
点Oを中心とする円があります。この円の周囲を6等分する点をA、B、C、D、E、Fとします。これらの点にさらに点Oを加えた7個の点から、3つの点をとりだし、これらを頂点とする三角形を作りたいと思います。次の問いに答え なさい。
(1) 正三角形は何個できますか。
(2) 点Oをひとつの頂点とする三角形は何個できますか。
(3) 直角三角形は何個できますか。
(4) 三角形は全部で何個作れますか。ただし、三角形ABDのように、三角形の一辺の上に点Oをふくむものも、ひとつの三角形として数えるものとします。
この動画を見る
点Oを中心とする円があります。この円の周囲を6等分する点をA、B、C、D、E、Fとします。これらの点にさらに点Oを加えた7個の点から、3つの点をとりだし、これらを頂点とする三角形を作りたいと思います。次の問いに答え なさい。
(1) 正三角形は何個できますか。
(2) 点Oをひとつの頂点とする三角形は何個できますか。
(3) 直角三角形は何個できますか。
(4) 三角形は全部で何個作れますか。ただし、三角形ABDのように、三角形の一辺の上に点Oをふくむものも、ひとつの三角形として数えるものとします。
【数Ⅲ】【微分とその応用】微分計算の基本2 ※問題文は概要欄

単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
すべての実数に対して 1+2x-3x²≦f(x)≦1+2x+3x² が成り立つようなf(x)がある。このときf'(0)を求めよ。
この動画を見る
すべての実数に対して 1+2x-3x²≦f(x)≦1+2x+3x² が成り立つようなf(x)がある。このときf'(0)を求めよ。
【数Ⅲ】【微分とその応用】色々な関数の微分1 ※問題文は概要欄

単元:
#微分とその応用#色々な関数の導関数#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
この動画を見る
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)
次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)
次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
【小6算数手元解説】受験算数 ゆりとバラ 不定方程式【問題文は概要欄】

単元:
#算数(中学受験)#場合の数#場合の数#その他#その他
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
理数個別チャンネル
問題文全文(内容文):
1本180円のゆりの花と1本225円のバラの花があります。このゆりとバラをまぜて何本か買ったら、合計が1890円になりました。ゆりもバラも1本以上買うものとすると、ゆり、バラをそれぞれ何本ずつ買いましたか。考えられるすべての本数を求めなさい。
この動画を見る
1本180円のゆりの花と1本225円のバラの花があります。このゆりとバラをまぜて何本か買ったら、合計が1890円になりました。ゆりもバラも1本以上買うものとすると、ゆり、バラをそれぞれ何本ずつ買いましたか。考えられるすべての本数を求めなさい。
【数Ⅰ】【図形と計量】測量の応用2 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のように1つの直線上にならぶ水平面上の3点A、B、Cから山頂Dの仰角を測ると、それぞれ45°、45°、30°であったという。AB=100m、BC=100mであるとき、山の高さDHを求めよ。
この動画を見る
右の図のように1つの直線上にならぶ水平面上の3点A、B、Cから山頂Dの仰角を測ると、それぞれ45°、45°、30°であったという。AB=100m、BC=100mであるとき、山の高さDHを求めよ。
【数Ⅰ】【図形と計量】測量の応用1 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
高さ50mの塔が立っている地点Hと同じ標高の地点Aから、塔の先端Pを見たところ、仰角が30°であった。また、Hと同じ標高の地点BからPを見たところ、仰角が45°で、∠BHA=30°であった。2地点A、B間の距離を求めよ。
この動画を見る
高さ50mの塔が立っている地点Hと同じ標高の地点Aから、塔の先端Pを見たところ、仰角が30°であった。また、Hと同じ標高の地点BからPを見たところ、仰角が45°で、∠BHA=30°であった。2地点A、B間の距離を求めよ。
【数Ⅰ】【図形と計量】球2 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のように、3辺の長さが5、6、7である三角形を底面とする三角柱に、三角柱の高さと同じ直径の球が内接している。
(1)球の表面積と体積を求めよ。
(2)三角柱の表面積と体積を求めよ。
(3)球と三角柱の表面積の比を求めよ。
(4)球と三角柱の体積比は、球と三角柱の表面積の比に等しいことを示せ。
※図は動画内参照
この動画を見る
右の図のように、3辺の長さが5、6、7である三角形を底面とする三角柱に、三角柱の高さと同じ直径の球が内接している。
(1)球の表面積と体積を求めよ。
(2)三角柱の表面積と体積を求めよ。
(3)球と三角柱の表面積の比を求めよ。
(4)球と三角柱の体積比は、球と三角柱の表面積の比に等しいことを示せ。
※図は動画内参照
【数Ⅰ】【図形と計量】球1 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
1辺の長さが3の正四面体ABCDに内接する球の中心をOとする。次の問いに答えよ。
(1)四面体OBCDの体積$V$を求めよ。
(2)球の半径$r$、表面積、体積を求めよ。
この動画を見る
1辺の長さが3の正四面体ABCDに内接する球の中心をOとする。次の問いに答えよ。
(1)四面体OBCDの体積$V$を求めよ。
(2)球の半径$r$、表面積、体積を求めよ。
【数Ⅰ】【図形と計量】空間の応用2 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\rm PA=PB=PC=\sqrt5,AB=3,BC=3,CA=4$である三角錐PABCの体積を求めよ。
この動画を見る
$\rm PA=PB=PC=\sqrt5,AB=3,BC=3,CA=4$である三角錐PABCの体積を求めよ。
【数Ⅰ】【図形と計量】空間の応用1 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のような正四角錐$\rm PABCD$において、頂点$\rm P$から正方形$\rm ABCD$に下ろした垂線を$\rm PH$とする。$\rm PA=a,\angle APH=\theta$であるとき、正四角錐の体積を求めよ。
この動画を見る
図のような正四角錐$\rm PABCD$において、頂点$\rm P$から正方形$\rm ABCD$に下ろした垂線を$\rm PH$とする。$\rm PA=a,\angle APH=\theta$であるとき、正四角錐の体積を求めよ。
【小6算数手元解説】受験算数 おおかみとヒツジ【問題文は概要欄】

単元:
#算数(中学受験)#場合の数#場合の数
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
理数個別チャンネル
問題文全文(内容文):
オオカミ3びきとヒツジ3びきをべつべつのオリに入れてあります。いま、このあわせて6ぴきを1ぴきずつ1つのオリに入れたいのですが、オオカミの数がヒツジの数より多くなるとヒツジはオオカミに食べられてしまいます(同じ数なら食べられません)。ヒツジがオオカミに食べられないようにするには、どんな順序で入れたらよいかを考えます。このような入れ方は何通りありますか。
この動画を見る
オオカミ3びきとヒツジ3びきをべつべつのオリに入れてあります。いま、このあわせて6ぴきを1ぴきずつ1つのオリに入れたいのですが、オオカミの数がヒツジの数より多くなるとヒツジはオオカミに食べられてしまいます(同じ数なら食べられません)。ヒツジがオオカミに食べられないようにするには、どんな順序で入れたらよいかを考えます。このような入れ方は何通りありますか。
【数Ⅰ】【図形と計量】空間の基本2 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
1辺の長さが3の正四面体$\rm ABCD$において、辺$\rm BC,CD$を$1:2$に分ける点を、それぞれ$\rm P,Q$とする。このとき、次のものを求めよ。
(1)$\rm AP,AQ,PQ$の長さ (2)$\cos \angle \rm PAQ$の値 (3)$\rm \triangle APQ$の面積
この動画を見る
1辺の長さが3の正四面体$\rm ABCD$において、辺$\rm BC,CD$を$1:2$に分ける点を、それぞれ$\rm P,Q$とする。このとき、次のものを求めよ。
(1)$\rm AP,AQ,PQ$の長さ (2)$\cos \angle \rm PAQ$の値 (3)$\rm \triangle APQ$の面積
【数Ⅰ】【図形と計量】空間の基本3 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
四面体$\rm ABCD$において、$\rm AB=BC=3,CA=2\sqrt5,BD=1,\angle ADB=\angle ADC=90^{\circ}$であるとき、次のものを求めよ。
(1)$\rm CD$の長さ (2)四面体$\rm ABCD$の体積 (3)$\triangle \rm ABC$の面積 (4)頂点$\rm D$から平面
この動画を見る
四面体$\rm ABCD$において、$\rm AB=BC=3,CA=2\sqrt5,BD=1,\angle ADB=\angle ADC=90^{\circ}$であるとき、次のものを求めよ。
(1)$\rm CD$の長さ (2)四面体$\rm ABCD$の体積 (3)$\triangle \rm ABC$の面積 (4)頂点$\rm D$から平面
【数Ⅰ】【図形と計量】空間の基本1 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のような$\rm AB=\sqrt6,AD=\sqrt3,AE=1$である直方体$\rm ABCD-EFGH$がある。このとき、次のものを求めよ。
(1)$\rm\angle ACF$の大きさ
(2)$\rm \triangle ACF$の面積
この動画を見る
右の図のような$\rm AB=\sqrt6,AD=\sqrt3,AE=1$である直方体$\rm ABCD-EFGH$がある。このとき、次のものを求めよ。
(1)$\rm\angle ACF$の大きさ
(2)$\rm \triangle ACF$の面積
【数Ⅰ】【図形と計量】面積応用10 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
1辺$c$と2つの角$\rm A,B$が与えられた$rm\triangle ABC$の面積を$S$とするとき、次の問いに答えよ。
(1)$a$を$c,\rm A,B$で表せ。 (2)$S=\dfrac{c^2\rm\sin A\sin B}{2\sin\rm(A+B)}$を証明せよ。
この動画を見る
1辺$c$と2つの角$\rm A,B$が与えられた$rm\triangle ABC$の面積を$S$とするとき、次の問いに答えよ。
(1)$a$を$c,\rm A,B$で表せ。 (2)$S=\dfrac{c^2\rm\sin A\sin B}{2\sin\rm(A+B)}$を証明せよ。
【数Ⅰ】【図形と計量】面積応用9 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
四角形$\rm ABCD$の2つの対角線$\rm AC,BD$の交点を$\rm O$とする。$\rm AC=4,BD=7,\angle AOB=45^{\circ}$であるとき、四角形$\rm ABCD$の面積$S$を求めよ。
この動画を見る
四角形$\rm ABCD$の2つの対角線$\rm AC,BD$の交点を$\rm O$とする。$\rm AC=4,BD=7,\angle AOB=45^{\circ}$であるとき、四角形$\rm ABCD$の面積$S$を求めよ。
【数Ⅰ】【図形と計量】面積応用8 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のような$\rm \triangle ABC$に内接する円の半径$r$を求めよ。
(1)$a=4,b=5,c=6$ (2)${\rm A=120^{\circ}},b=7,c=8$
この動画を見る
次のような$\rm \triangle ABC$に内接する円の半径$r$を求めよ。
(1)$a=4,b=5,c=6$ (2)${\rm A=120^{\circ}},b=7,c=8$
【明治】全学部統一 物理 (1)~(19)【解答速報】【NI・SHI・NO】

単元:
#物理#大学入試過去問(物理)#理科(高校生)#大学入試解答速報#物理#明治大学#明治大学
指導講師:
理数個別チャンネル
問題文全文(内容文):
こちらの動画は2025年2月5日(水)に実施された、明治大学 全学部統一入試の物理の解答速報です。この動画では(1)~(19)を解説しています。(20)・(21)の解説は https://youtu.be/W_D7tLceNgY をご覧ください!
著作権の関係で問題を映せないため、お手元に問題のご用意をお願いいたします。 こちらは当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。 解答だけ知りたい方は概要欄下部からどうぞ!
■解答
大問1 (1)G (2)E (3)A (4)F (5)C (6)B (7)B
大問2 (8)E (9)C (10)A (11)D (12)C (13)F (14)C
大問3 (15)F (16)A (17)C (18)C (19)B (20)E (21)A
この動画を見る
こちらの動画は2025年2月5日(水)に実施された、明治大学 全学部統一入試の物理の解答速報です。この動画では(1)~(19)を解説しています。(20)・(21)の解説は https://youtu.be/W_D7tLceNgY をご覧ください!
著作権の関係で問題を映せないため、お手元に問題のご用意をお願いいたします。 こちらは当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。 解答だけ知りたい方は概要欄下部からどうぞ!
■解答
大問1 (1)G (2)E (3)A (4)F (5)C (6)B (7)B
大問2 (8)E (9)C (10)A (11)D (12)C (13)F (14)C
大問3 (15)F (16)A (17)C (18)C (19)B (20)E (21)A
【解答速報・全問解説】2025年2月2日 東京都市大学 物理解答速報【NI・SHI・NO】

単元:
#物理#大学入試過去問(物理)#理科(高校生)#大学入試解答速報#物理#東京都市大学
指導講師:
理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年2月2日(日)に実施された、東京都市大学の物理の入試問題の解答速報です。著作権の関係で問題を映せないため、お手元に問題をご用意した上でご覧ください。 当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。 解答だけ知りたい方は29:21からどうぞ!
■解答
第1問 (1)2 (2)3 (3)4 (4)2 (5)3 (6)2
第2問 (7)2 (8)1 (9)3 (10)2 (11)1 (12)6
第7問 問1.√(2gH) 問2.√(6gH)e/2 問3.√(H/2g) 問4.H/4 問5.L/2
この動画を見る
こちらの動画は、2025年2月2日(日)に実施された、東京都市大学の物理の入試問題の解答速報です。著作権の関係で問題を映せないため、お手元に問題をご用意した上でご覧ください。 当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。 解答だけ知りたい方は29:21からどうぞ!
■解答
第1問 (1)2 (2)3 (3)4 (4)2 (5)3 (6)2
第2問 (7)2 (8)1 (9)3 (10)2 (11)1 (12)6
第7問 問1.√(2gH) 問2.√(6gH)e/2 問3.√(H/2g) 問4.H/4 問5.L/2
【小6算数手元解説】受験算数 3平方センチメートルの三角形は何通り出来る?【問題文は概要欄】

単元:
#算数(中学受験)#場合の数#場合の数
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
理数個別チャンネル
問題文全文(内容文):
たて2cm、横4cmの長方形があります。その周上に12 個の点A, B, C,・・・、Lがあり、となりの点と点の間の長さは1cmとします。これら12個の点から適当に3点を選び、三角形を作ります。たとえば三角形ACEまたは三角形JEGを作ると、その三角形の面積は2㎠となります。このようにして3点を選ぶと、その三角形の面積が3㎠となる場合は何通りありますか。ただし、選んだ点を結んだ線上に他の点があってもよいものとします。
この動画を見る
たて2cm、横4cmの長方形があります。その周上に12 個の点A, B, C,・・・、Lがあり、となりの点と点の間の長さは1cmとします。これら12個の点から適当に3点を選び、三角形を作ります。たとえば三角形ACEまたは三角形JEGを作ると、その三角形の面積は2㎠となります。このようにして3点を選ぶと、その三角形の面積が3㎠となる場合は何通りありますか。ただし、選んだ点を結んだ線上に他の点があってもよいものとします。
【数Ⅰ】【図形と計量】面積応用3 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のような四角形ABCDの面積を求めよ。
(1)∠A=135°、∠C=45°、AB=1、BC=3、CD=$\sqrt{2}$、DA=$\sqrt{2}$
(2)∠B=120°、AB=3、BC=5、CD=5、DA=4
この動画を見る
次のような四角形ABCDの面積を求めよ。
(1)∠A=135°、∠C=45°、AB=1、BC=3、CD=$\sqrt{2}$、DA=$\sqrt{2}$
(2)∠B=120°、AB=3、BC=5、CD=5、DA=4
【数Ⅰ】【図形と計量】面積応用2 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のような△ABCについて、∠Aの二等分線と辺BCの交点をDとするとき、線分ADの長さを求めよ。
(1)AB=4、AC=3、A=120°
(2)AB=10、AC=15、A=60°
この動画を見る
次のような△ABCについて、∠Aの二等分線と辺BCの交点をDとするとき、線分ADの長さを求めよ。
(1)AB=4、AC=3、A=120°
(2)AB=10、AC=15、A=60°
【数Ⅰ】【図形と計量】面積応用7 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
半径$r$の円に内接する正$n$角形の面積、および外接する正$n$角形の面積を、それぞれ$r$と$n$を用いて求めよ。
この動画を見る
半径$r$の円に内接する正$n$角形の面積、および外接する正$n$角形の面積を、それぞれ$r$と$n$を用いて求めよ。
【数Ⅰ】【図形と計量】面積応用6 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)半径1の円に内接する正六角形の面積を求めよ。
(2)半径1の円に外接する正六角形の面積を求めよ。
この動画を見る
(1)半径1の円に内接する正六角形の面積を求めよ。
(2)半径1の円に外接する正六角形の面積を求めよ。
【数Ⅰ】【図形と計量】面積応用5 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
円に内接する四角形$\rm ABCD$において、$\rm AB=4,BC=3,CD=1,DA=2$とするとき、次のものを求めよ。
(1)対角線$\rm AC$の長さ
(2)四角形$\rm ABCD$の面積
この動画を見る
円に内接する四角形$\rm ABCD$において、$\rm AB=4,BC=3,CD=1,DA=2$とするとき、次のものを求めよ。
(1)対角線$\rm AC$の長さ
(2)四角形$\rm ABCD$の面積
【数Ⅰ】【図形と計量】面積応用4 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のような四角形$\rm ABCD$の面積を求めよ。
(1)円に内接し、$\rm AB=4,BC=3,CD=1,\angle B=60^{\circ}$
(2)円に内接し、$\rm AB=1,BC=2\sqrt2,CD=\sqrt2,\angle B=45^{\circ}$
この動画を見る
次のような四角形$\rm ABCD$の面積を求めよ。
(1)円に内接し、$\rm AB=4,BC=3,CD=1,\angle B=60^{\circ}$
(2)円に内接し、$\rm AB=1,BC=2\sqrt2,CD=\sqrt2,\angle B=45^{\circ}$
【数Ⅰ】【図形と計量】面積応用1 ※問題文は概要欄

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次のような平行四辺形ABCDの面積を求めよ。
(1)AB=3、BC=5、∠ABC=60°
(2)AB=4、AD=6、∠ABC=135°
この動画を見る
次のような平行四辺形ABCDの面積を求めよ。
(1)AB=3、BC=5、∠ABC=60°
(2)AB=4、AD=6、∠ABC=135°
【高校物理】鉛直投げ上げ【毎週土曜日16時更新!】

単元:
#物理#力学#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
地面から、速さ19.6m/sで鉛直上向きに小球を投げ上げた。重力加速度の大きさを9.8m/s²とする。
(1)地上14.7mの点を小球が通り過ぎるのは何s後か。
(2)小球が最高点に達するまでの時間は何sか。
(3)最高点の高さは何mか。
(4)小球が再び地面に落ちてくるまでの時間と、そのときの速度をそれぞれ求めよ。
この動画を見る
地面から、速さ19.6m/sで鉛直上向きに小球を投げ上げた。重力加速度の大きさを9.8m/s²とする。
(1)地上14.7mの点を小球が通り過ぎるのは何s後か。
(2)小球が最高点に達するまでの時間は何sか。
(3)最高点の高さは何mか。
(4)小球が再び地面に落ちてくるまでの時間と、そのときの速度をそれぞれ求めよ。
